

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

PROBLEM SOLVING WITH PROGRAMMING

Year Semester
Hours/Week

C
Marks

L T P/D CIE SEE Total

I II 2 - - 2 30 70 100

Pre-requisite Nil

COURSE OUTCOMES

At the end of the course, the students will develop ability to

1. Analyze and implement software development tools like algorithm, pseudo codes and

programming structure.

2. Modularize the problems into small modules and then convert them into modular programs

3. Apply the pointers, memory allocation techniques and use of files for dealing with variety of

problems.

4. Apply C programming to solve problems related to scientific computing.

5. Develop efficient programs for real world applications.

UNIT I

Pointers

Basics of pointers, pointer to array, array of pointers, void pointer, pointer to pointer- example

programs, pointer to string.

Project: Simple C project by using pointers.

UNIT II

Structures

Basics of structure in C, structure members, accessing structure members, nested structures,

array of structures, pointers to structures - example programs, Unions- accessing union members-

example programs.

Project: Simple C project by using structures/unions.

UNIT III

Functions

Functions: User-defined functions, categories of functions, parameter passing in functions: call

by value, call by reference, recursive functions. passing arrays to functions, passing strings to

functions, passing a structure to a function.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Project: Simple C project by using functions.

UNIT IV

File Management

Data Files, opening and closing a data file, creating a data file, processing a data file,

unformatted data files.

Project: Simple C project by using files.

UNIT V

Memory Management

Memory Management: Dynamic memory allocation and deallocation functions:- malloc(),

calloc(), realloc() and free()-examples & discussion for each. Low-level programming, register

variables, bitwise operations, bit fields.

UNIT VI

Developing Large Programs

Some Additional features of C, enumerations, command line parameters, more about library

functions, macros, C preprocessor. Pre-processor directives: #define, #undef, #if, #endif, #elif,

#ifdef, #ifndef, #error.

TEXT BOOKS

1. Computer Science: A Structured Programming Approach Using C- B. A. Forouzan and R.F.

Gilberg, Third Edition, Cengage Learning'

2. B.W.Kernighan Dennis M. Ritchie, The C Programming Language, PHI/Pearson

Education,ISBN:0-13-110362-8

REFERENCE BOOKS

1. C Programming: A Modern Approach by K.N. King .

2. Let us C by Yashwant Kanetkar. 13th edition, BPB Publications

3. Computer science a structured programming approach using C by Pradeep K.Sinha, Priti Sinha,

3rd edition, Thomson publications.

4. Programming Embedded Systems by Michael Barr and Anthony Massa, 2
nd

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

UNIT I: Topics Included

Pointers

Basics of pointers, pointer to array, array of pointers, void pointer, pointer to pointer- example

programs, pointer to string.

Project: Simple C project by using pointers.

Pointers Overview :

Pointers are an important feature of the C language. To understand pointers let us revise certain

points about computer memory. You already know that computers store the data and instructions

in memory. The computer’s memory is a sequential collection of storage cells. Each cell is

known as a byte of memory. Each cell also has a unique address associated with it. This address

is a number. Generally the addresses given to memory locations are numbered sequentially.

Whenever a variable is declared in a program, the system allocates memory to hold the value of

the variable. Each byte has a unique memory address, therefore each variable also has a unique

address associated with it. eg.

int i = 10;

This declaration reserves space in memory to store the value of the variable i. The name i gets

associated with that particular memory address. The value 10 which has been assigned to the

variable i gets stored in that particular memory location. We can represent the location of the

variable in memory as follows :

Variable_name i

Value 10

Address 3245

Let us assume that the computer has allocated the address location 3245 to store the value of the

integer variable i. Thus, the variable i gets an address associated with it to store its value. It is

possible for us to determine the address of a variable in memory. It can be done as follows :

Example : To determine the address of a variable in memory : main()

{ int i = 10; printf(“\nValue of I :”, i); printf(“\nAddress of i:” &i);

}

The output is:

Value of I: 10

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Address of i :3245

It is clear from the above example that the address of i is obtained with the expression &i. We

make use of the address operator (&) to determine the address of the variable i. Thus the

memory address of a variable is a number which is always positive. Since the memory address is

a number we can as well store it in memory like any other variable. This is where pointers come

into picture. In all the programs we have written so far we have made use of the address operator

& when using scanf to read the values of the variables. The same address operator can be used to

determine the address of the corresponding variable in memory.

Thus, pointers are nothing but variables used to hold memory address. A pointer is a variable

which contains the address of another variable. It is therefore possible to access the value of a

variable either with the help of the variable name or with its address.

Example : Let us write a program to further understand the concept of pointers : main()

{ int a; char ch1; float b;

a = 100; ch1 = ‘Z’; b = 40.85; printf(“\nThe value of a is %d:”, a); printf(“\nThe address of a is

:”, &a); printf(“\nThe value of ch1 is %c:”, ch1); printf(“\nThe address of ch1 is :”, &ch1);

printf(“\nThe value of b is %f:”, b); printf(“\nThe address of b is :”, &b);

}

The output of the program is :

The value of a is : 100

The address of a is : 6540

The value of ch1 is : Z

The address of ch1 is : 3400

The value of b is : 40.85

The address of b is : 5284

It is important to note here that the addresses of the variables that are output here may not match

with the output you get and that every time you run this program, the compiler may assign

different memory locations to the variables and you may get different addresses. We can also

make use of the %u operator to print addresses since addresses are unsigned integers.

Since the address of a variable is a number we can as well store it in another variable. Let us use

a variable j to store the address of the variable i. The address of i can be stored in j as j = &i;

But every variable in C has to be declared before we can use it. Since we are using j for the

purpose of storing the address of i we make use of the operator ‘*’ to declare it. This is called the

value at address operator.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

We declare j as follows :

int*j;

This declaration tells the compiler that j is a variable used to store the address of an integer

value. i.e. j points to an integer.

j itself is a variable and so will have its own unique address associated with it. The value at

j is the address of the variable i. This can be depicted as follows :

Variable I j

Value 10 3245

Address 3245 4000

Declaring a pointer variable :

The general form of declaring a pointer variable is as follows :

data type *pointer_name; In this declaration the * means it is a pointer variable

pointer_name is the name given to the pointer variable and it being a variable

needs space in memory.

The data type indicates the type of the data to which the pointer variable points. eg. int *a;

This declares that the pointer variable points to an integer data type. char *ch1;

Here the pointer variable points to a character data type.

float *p; declares p as a pointer to a floating point variable.

When you declare a pointer variable you have to initialise it by assigning to it the address

of a variable eg.

int *p. i; p = &i; Thus p is initialised and now contains the address of i. Pointers should not be

used before they are initialised. When the type of a pointer is declared it will hold the address of

that data type only.

eg. int *i, j;

float p; i = &p;

is invalid since p is declared float and the data type in the pointer declaration

is declared to be of type int.

A pointer variable can also be initialised at the time of declaration also as follows: float a, *z =

&a;

Here a is declared to be of type float. Pointer variable z is also declared to hold address of

data type float and hence can hold the address of a. (Note that a has to be first declared before

assigning its address to z i.e. the statement float *z = &a, a; is invalid. Absolute value cannot be

assigned to any pointer variable. Thus the following is invalid : int *p;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

p = 100;

Having seen how to declare and initialise pointer variables let us now see how to make use

of the pointer variable to access the value of a variable. Example : To determine the value of a

variable using a pointer. main()

{ int i, *ptr, val; i = 100; ptr = &i; val = *ptr; printf(“\nThe value of i is %d”, i); printf(“\nThe value of

i is %d”, *ptr); printf(“\nThe value of i is %d”, *&ptr); printf(“\nThe value of i is %d”, val);

printf(“\nThe address of i is %u”, &i); printf(“\nThe address of i is %u”, ptr);

}

The output of the program will be :

The value of i is 100

The value of i is 100

The value of i is 100

The value of i is 100

The address of i is 65496

The address of i is 65496

The program demonstrates the various ways which can be used to determine the value of a

variable. The statement val = *ptr; returns the value of the variable whose address is stored in ptr

to val. Thus *ptr returns the value of the variable i.

ptr = &i; val = *ptr; can be combined and written as : val = *&i;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Remember that val will have the same value as the value of the variable i. Study

thoroughly the concept of pointers before proceeding to the further topics.

eg.

float x, p, q, z, *ptr1, *ptr2; ptr1 = &p; ptr2 = &q;

Here ptr1 and ptr2 are pointer variables which point to variables of type float. They are

therefore initialised with the addresses of float variables p and q respectively.

then

(i) x = *ptr1/ *ptr2; *ptr1 = *ptr2 – 10; z = *ptr1 x 10; are valid.

Example: main()

{

 Check Your Progress.

1. What will be the output of the following :

a) int i = 10, *j;

j = &i;

printf(“%d\t%u”, i, &i);

...

...

b) float f = 15.3, *ptr = &f;

printf(“%u\t%f”, &f, f);

...

...

2. Are the following valid ?

a) int *p;

p = 100;

...

...

b) float *j;

int i;

j = &i;

...

...

c) int i, *j = &i;

...

...

d) char ch1, *cptr;

int i;

cptr = i;

...

...

POINTER ARITHMETIC

Pointer variables can be used in expressions

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

float a, b, *p1 = &a, *p2 = &b;

float z;

a = 100; b = 21.8; printf(“\nThe value of a is %6.2f”, a); a = *p1 * 10; printf(“The new value of a

is %6.2f”, a); z = *p1/*p2; printf(“The value of z is %6.2f”, z); z = *p1-*p2; printf(“The new

value of z is %6.2f”, z);

}

The output of the program will be:

The value of a is 100.00

The new value of a is 1000.00

The value of z is 45.87

The new value of z is 978.20

Note : When using ‘/’ (division operator) in pointer arithmetic remember to have a space

between the/and * else /* will be mistaken as a comment. Thus write *ptr1/ *ptr2 and not

*ptr1/*ptr2. With the above example it is clear that with the use of pointers we have been able to

manipulate the values of variables.

(ii) Pointers can also be incremented or decremented. Thus

ptr1 ++ or ptr2 -- are valid in C.

In this case, it is important to understand what happens when pointers are incremented or

decremented. ptr++ will cause the pointer ptr1 to point to the next value of its type. Thus if a is

an integer and ptr1 is a pointer to a, then when ptr is incremented its value will be incremented

by 2 since an integer is stored in 2 bytes of memory. Thus if the pointer ptr1 has an initial value

4820 then ptr++ will cause its value to be 4822 i.e. its value is incremented by the length of the

data type to which it points. This length is called the scale factor.

For the purpose of revising let us once again see the various data types and the number of

bytes they occupy in memory

Int 2

bytes

Char 1 byte

Float 4

bytes

long int 4

bytes

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Double 8

bytes

Example : To demonstrate increment and decrement of pointers main()

{ int a, *ptr1; float b, *ptr2; ptr1 = &a;

printf(“\nptr1 is : %u”, ptr1); ptr1++; printf(“\nnew ptr1 is %u”, ptr1); ptr2 = &b; printf(“\nptr2

is : %u”, ptr2); ptr2—; printf(“\nnew ptr2 is %u”, ptr2);

}

The output of the program is :

ptr1 is : 65492 new ptr1 is : 65494 ptr2 is : 65494 new ptr2 is : 65490

In this program ptr1 points to an integer variable whereas ptr2 points to a float variable.

Incrementing ptr1 causes its value to increase by 2 (since int occupies 2 bytes in memory).

Decrementing ptr2 causes its value to be decremented by 4 since a float occupies 4 bytes in

memory.

(iii) Point (ii) can be extended as follows :

C also allows us to add integers to pointers. eg.

ptr2 + 4 ptr1+10

C also allows to subtract integers form pointers :

ptr1 -10 ptr2 - 2

Subtraction of pointers is allowed in C p1-p2

Example : To add and subtract integers from pointers : main()

{

int a, b, *ptr1 = &a, *ptr2 = &b; int q = 10, b = 20; printf(“\nThe value of ptr1 is %d”, ptr1);

*ptr1 = *ptr1 + 10; printf(“\nThe new value of ptr1 is %d”, *ptr1); printf(“\nThe value of ptr2 is

%d”, *ptr2);

*ptr2 = *ptr2 - 40; printf(“\nThe new value of ptr2 is %d”, *ptr2);

*ptr2 = ptr2 - ptr1;

printf(“The new value of ptr2 is %d”, *ptr2);

}

Check the output of this program and study what happens to the values of ptr1 and ptr2

when integers are added to and subtracted from them.

(iv) Pointers can also be compared as :

ptr1 > ptr2 ptr2 < ptr1 ptr1 == ptr2 ptr1 != ptr2 and so on. It is however important to note that

pointer variables can

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

be compared provided both variables point to objects of same data type. (v) Remember that you

cannot -

- add two pointers ptr1 + ptr2 is invalid

- use pointers in multiplication

ptr1 * ptr2 is invalid ptr2 * 10 is invalid

- use pointers in division ptr1/20 is invalid ptr2/ptr1 is invalid

(*fnptr)(a, b);

(Note that there is a parenthesis around *fnptr).

This is as good as calling function add():

 Check Your Progress.

1. Write True or False :

a) Pointers cannot be used in expressions.

b) Pointers can be added to integers.

c) Multiplication of pointers is valid in C.

d) Pointers can be assigned negative values.

2. Answer in 1-2 sentences :

a) What cannot be done with pointers in pointer arithmetic?

...

...

b) What happens when pointers are incremented?

...

...

 POINTERS AND ARRA YS

We have already seen that when we declare an array the elements of the array

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

are stored in contiguous memory locations. In pointers we have studied that whenever we

increment a pointer it points to the next memory location of its type. Using this, let us now study

pointers and arrays.

When an array is declared, the compiler immediately allocates a base address and

sufficient memory to hold all the elements of the array in contiguous memory locations. The base

address is the address of the first element (i.e. 0th index) of the array. The compiler also defines

the array name as a constant pointer to the first element of the array.

Pointers to one dimensional arrays :

Let us study about pointers and one dimensional arrays with the help of the following

example:

Suppose you declare an array as follows :

int arr[5] = { 10, 20, 30, 40, 50};

arr is an array of type int whose size is five and the elements of the array are initialised in

the declaration. Let us assume that the base address of arr is 2400. Then since each element of

the array is of type int and there are five elements in the array the five elements will be stored as

follows

arr is a constant pointer which points to the first element arr[0]. Thus the address

of arr[0] in our example is 2400.

We can declare an int pointer ptr to point to the array arr as ptr = arr; or ptr = &arr[0];

We already know that when we use the increment operator with the pointer, its value gets

increased by the length of the data type to which it points. Here ptr points to data type int,

therefore incrementing ptr will cause its value to increase by 2 and hence it will point to the next

element of the array which is arr[1]. Thus it is possible to obtain the addresses of all the elements

of arr[] as follows :

Ptr =&arr[0] =2400

ptr + 1 =&arr[1] =2402

ptr + 2 =&arr[2] =2404

ptr + 3 =&arr[3] =2406

ptr + 4 =&arr[4] =24

 :

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Thus you can obtain the address of the element as :

address of n
th

 element = base address + (n x scale factor of data type) In our case we can

determine the address of the 4th element as : address of the 4th element = 2400 + (4 x scale

factor of int)

= 2400 + (4 x 2)

= 2408

We can use pointers to access the elements of an array. Thus we can access arr[3] as

*(ptr+3), arr[2] as *(ptr + 2) and so on. The pointer accessing method is very fast as compared to

accessing by the index number as arr[2], arr[4] etc. Example : A program to obtain the

addresses of all elements in the array :

main()

{ int arr[5] = {10,20, 30, 40, 50}; int i, *ptr; ptr = &arr[0]; for (i = 0; i <5; i++)

{

printf(“Element: %d\tAddress : %u”, *ptr, ptr); ptr++;

}

}

A sample run would give the following :

Element: 10 Address :

65488

Element: 20 Address :

65490

Element: 30 Address :

65492

Element: 40 Address :

65494

Element: 50 Address :

65496

In the above program note that we have not used indexing to access the elements of the

array. Instead we have incremented the pointer ptr everytime so that it points to the next memory

location of its type. Accessing array elements with pointers is always faster as compared to

accessing them by subscripts. This method can be very effectively used if the elements are to be

accessed in a fixed order according to some definite logic. If elements are to be accessed

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

randomly, then using subscripts would be easier though not as fast as accessing them using

pointers.

Pointers to 2 dimensional arrays :

We already know that elements of a two dimensional array are stored row wise. Thus the

base address of a two dimensional array arr[] is the address of the arr[0][0]
tn

element which will

be obtained as &arr[0][0]. The compiler then allocates contiguous memory locations to the array

elements row wise i.e first all the elements of row 1 are stored then all elements of row 2 and so

on. Let us see this representation with the help of the following example :

int arr[2][5] = {(1,2 ,3,4,5),

(6 ,7,8, 9,10)

} ;

The elements will be stored in memory rowwise as : If we want to access the element arr[1][2]

we can do it as :

arr[1][2] = *(ptr + 5 x1 +2)

= *(ptr + 7)

= 8

where ptr points to the base address of the array. Thus to access an element arr[i][j] the formula

would be :

a[i][j] = *(ptr + no. of cols x i + j)

Hence it is essential to define the number of columns i.e. size of each row when declaring a

two dimensional array so that the compiler can determine the storage mapping for the array

elements.

Pointers and strings :

A string is an array of characters which is terminated by the null character “\0'. Thus the

concept of pointers and one dimensional arrays can be extended to array of characters. Let us

write a program to determine the values of the elements of the character array with the help of

pointers.

Example : To access elements of a string with pointers main()

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

{

char str1[25] = “Pointers”; char *cp; cp = &str1[0]; while(*cp != ‘\0’)

{

printf(“\nCharacter :%c\tAddress : %u”, *cp, cp); cp++;

}

}

The output of the program will be :

Character: P Address :

65472

Character: o Address :

65473

Character: i Address :

65474

Character: n Address :

65475

Character: t Address :

65476

Character: e Address :

65477

Character: r Address :

65478

Character: s Address :

65479

Since characters require one byte of storage in memory, incrementing pointer cp will

increment its value by 1 and it will point to the next character in the string.

The concept of single dimension array of characters i.e. string can be extended to the table

of strings. When we declare a two dimensional array of strings, each string will be allocated

equal length as specified in its declaration. However, in practice the all strings of the table are

rarely equal in length. Hence instead of making each row of a fixed number of characters we can

make each row a pointer to a string of varying lengths.

eg. char *name[3] =

{

“Jimmy”;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

“Jill”;

“Joseph”

} ;

The above declaration declares name to be an array of three pointers where each pointer

points to the particular name. This can be shown as follows :

name[0]----------> Jimmy name[1]----------> Jill name[2]----------> Joseph

Had we declared name to be a two dimensional array of strings as name[3][10] it would

have reserved 30 bytes for the array name, where each name would be allocated 10 bytes. But

when we declare name to be an array of pointers, where each element points to a name, the total

memory allocated would be 18 bytes as follows

In order to access the jth character of the ith row :

*(name[i] + j) would be useful. Note that we first select the row, then the jth element of

that particular row and then determine value at address.

We can print the names in the array as shown in the following example:

Example : To demonstrate an array of pointers to strings.

main()

{

int i;

char *name[3] = {

“Jimmy”,

“Jill”,

“Joseph”

} ;

printf(“\nNames in the array :”); for(i=0; i<3; i++) printf(“\n%s”, name[i]);

}

 Check Your Progress.

1. Write the formulae for accessing the following with pointers:

a) The nth element of a one dimensional array of float:

:

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

...

...

b) The ith character of a string

...

...

c) The a[i][j]th element of the array two dimensional array a[][].

...

...

2. Write programs in C for the following using pointers :

a) Find the average of elements of array a[5] of type int.

b) Reverse the string “Pointers&Arrays” using pointers to strings.

c) Write a program using pointers to input elements to an integer array and print them in the reverse

order.

POINTERS TO POINTERS

We know that a pointer variable contains the address of a data type. Since the addresses are

always whole numbers the pointers will always contain whole numbers. The declaration char *ch

does not imply that ch contains a data type char. It implies that ch is a pointer to a data type

char, i.e ch contains the address of a char variable, i.e. the value pointed to by ch is of type-

char.

The concept of pointers can thus be extended further. A pointer contains the address of a

variable. This variable itself can be a pointer. We can have a pointer to contain the address of

another pointer.

eg.

int. i, *j,**k; j = &i; k = &j;

i is an int data type and j is a pointer to i. k is a pointer variable which points to the integer

pointer j. The value at k will be the address of j. In principle, there is no limit how far you can

extend the concept of pointers to pointers. You can further have another pointer to point to k and

so on.

Example : Let us write a small program to illustrate pointers to pointers :

main()

{

char ch, *ch_ptr; int **ptr; ch = ‘A’; ch_ptr = &ch; ptr = &ch_ptr; printf(“\nCharacter is : %c :”,

ch); printf(“\nAddress of ch is : %u”, ch_ptr); printf(“\nValue of ch_ptr is : %u”, ch_ptr);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

printf(“\nAddress of ch_ptr is : %u”, ptr); printf(“\nValue of ptr is : %u”, ptr);

printf(“\nCharacter is :%c”, *ch_ptr);

printf(“\nCharacter is :%c”, **ptr);

}

Carefully follow the program to see how to obtain addresses and values at addresses with the

help of the above program. Also note that although ch is of type char and ch_ptr is a pointer to

ch, the pointer ptr to ch_ptr is declared of type int, since it is going to hold the address of ch_ptr

which is always going to be a whole number.

Check Your Progress.

1. Write the declaration and initialisation for the following :

a) A pointer to contain the address of a data type float:

...

...

b) A pointer to contain the address of a data type int and another to contain the address of this

pointer:

...

...

c) A pointer to contain the address of a data of type char.

UNIT II: Topics included

Structures

Basics of structure in C, structure members, accessing structure members, nested structures,

array of structures, pointers to structures - example programs, Unions- accessing union members-

example programs.

Project: Simple C project by using structures/unions.

It is the collection of dissimilar data types or heterogeneous data types grouped together. It

means the data types may or may not be of same type. Structure is a collection of variables (can

be of different types) under a single name.

For example: You want to store information about a person: his/her name, citizenship number

and salary. You can create different variables name, citNo and salary to store these information

separately.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

What if you need to store information of more than one person? Now, you need to create

different variables for each information per person: name1, citNo1, salary1, name2, citNo2,

salary2 etc.

A better approach would be to have a collection of all related information under a single name

Person structure, and use it for every person.

Structure declaration-

struct tagname

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

struct

{

Data type member1;

Data type member2;

Data type member3;

………

………

Data type member n;

};

OR

struct tagname

{

struct element 1;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

struct element 2;

struct element 3;

………

………

struct element n;

}

Structure variable declaration;

struct student

{

int age;

char name[20];

 char branch[20];

}; struct student s;

Initialization of structure variable-

Like primary variables structure variables can also be initialized when they are declared.

Structure templates can be defined locally or globally. If it is local it can be used within that

function. If it is global it can be used by all other functions of the program. We cant initialize

structure members while defining the structure

struct student

{

int age=20;

char name[20]=”sona”;

}s1;

The above is invalid.

A structure can be initialized as

struct student

{

int age,roll;

char name[20];

} struct student s1={16,101,”sona”};

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

struct student s2={17,102,”rupa”};

If initialize is less than no.of structure variable, automatically rest values are taken as zero.

Accessing structure elements-

Dot operator is used to access the structure elements. Its associativety is from left to right.

structure variable ;

s1.name[];

s1.roll;

s1.age;

Elements of structure are stored in contiguous memory locations. Value of structure variable can

be assigned to another structure variable of same type using assignment operator.

Example:

#include<stdio.h>

#include<conio.h>

void main()

{

int roll, age;

char branch;

} s1,s2;

printf(“\n enter roll, age, branch=”);

scanf(“%d %d %c”, &s1.roll, &s1.age, &s1.branch);

s2.roll=s1.roll;

printf(“ students details=\n”);

printf(“%d %d %c”, s1.roll, s1.age, s1.branch);

printf(“%d”, s2.roll);

}

Unary, relational, arithmetic, bitwise operators are not allowed within structure variables.

Size of structure- Size of structure can be found out using sizeof() operator with structure

variable name or tag name with keyword.

sizeof(struct student); or

sizeof(s1);

sizeof(s2);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Size of structure is different in different machines. So size of whole structure may not be equal to

sum of size of its members.

Array of structures

When database of any element is used in huge amount, we prefer Array of structures.

Example: suppose we want to maintain data base of 200 students, Array of structures is used.

#include<stdio.h>

#include<string.h>

struct student

{

char name[30];

char branch[25];

int roll;

};

void main()

{

struct student s[200];

int i;

s[i].roll=i+1;

printf("\nEnter information of students:");

for(i=0;i<200;i++)

{

printf("\nEnter the roll no:%d\n",s[i].roll);

printf("\nEnter the name:");

scanf("%s",s[i].name);

printf("\nEnter the branch:");

scanf("%s",s[i].branch); printf("\n");

}

printf("\nDisplaying information of students:\n\n");

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

for(i=0;i<200;i++)

{

printf("\n\nInformation for roll no%d:\n",i+1);

printf("\nName:");

puts(s[i].name);

printf("\nBranch:");

puts(s[i].branch);

}

}

In Array of structures each element of array is of structure type as in above example.

Array within structures

struct student

{

char name[30];

int roll,age,marks[5];

}; struct student s[200];

We can also initialize using same syntax as in array.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Nested structure

When a structure is within another structure, it is called Nested structure. A structure variable

can be a member of another structure and it is represented as

struct student

{

element 1;

element 2;

………

………

struct student1

{

member 1;

member 2;

}variable 1;

……….

……….

element n;

}variable 2;

It is possible to define structure outside & declare its variable inside other structure.

struct date

{

int date,month;

};

struct student

{

char nm[20];

int roll;

struct date d;

}; struct student s1;

struct student s2,s3;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Nested structure may also be initialized at the time of declaration like in above example.

struct student s={“name”,200, {date, month}}; {“ram”,201, {12,11}};

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Nesting of structure within itself is not valid. Nesting of structure can be extended to any level.

struct time

{

int hr,min;

};

struct day

{

int date,month;

struct time t1;

};

struct student

{

char nm[20];

struct day d;

}stud1, stud2, stud3;

Structure Pointers

As we have said already we need call by reference calls which are much more efficient than

normal call by value calls when passing structures as parameters. This applies even if we do not

intend the function to change the structure argument.

A structure pointer is declared in the same way as any pointer for example

 struct address {

 char name[20] ;

 char street[20] ;

 } ;

 struct address person ;

 struct address *addr_ptr ;

declares a pointer addr_ptr to data type struct address. To point to the variable person declared

above we simply write

 addr_ptr = &person ;

which assigns the address of person to addr_ptr.

To access the elements using a pointer we need a new operator called the arrow operator, ->,

which can be used only with structure pointers. For example

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

 puts(addr_ptr -> name) ;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

For Example :- Program using a structure to store time values.

 #include <stdio.h>

 struct time_var {

 int hours, minutes, seconds ;

 } ;

 void display (const struct time_var *) ;

/* note structure pointer and const */

 void main()

 {

 struct time_var time ;

 time.hours = 12 ;

 time.minutes = 0 ;

 time.seconds = 0 ;

 display(&time) ;

 }

 void display(const struct time_var *t)

 {

 printf("%2d:%2d;%2d\n", t -> hours, t -> minutes, t -> seconds) ;

 }

Note that even though we are not changing any values in the structure variable we still employ

call by reference for speed and efficiency. To clarify this situation the const keyword has been

employed.

Dynamic allocation of structures

The memory allocation functions may also be used to allocate memory for user defined types

such as structures. All malloc() basically needs to know is how much memory to reserve.

For Example :-

 struct coordinate {

 int x, y, z ;

 } ;

 struct coordinate *ptr ;

 ptr = (struct coordinate *) malloc(sizeof (struct coordinate)) ;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

UNION

Union is derived data type contains collection of different data type or dissimilar elements. All

definition declaration of union variable and accessing member is similar to structure, but instead

of keyword struct the keyword union is used, the main difference between union and structure is

Each member of structure occupy the memory location, but in the unions members share

memory. Union is used for saving memory and concept is useful when it is not necessary to use

all members of union at a time.

Where union offers a memory treated as variable of one type on one occasion where (struct), it

read number of different variables stored at different place of memory.

A union is data type where the data area is shared by two or more members generally of different

type at different times.

For Example :-

union u_tag {

 short ival ;

 float fval ;

 char cval ;

 } uval ;

The size of uval will be the size required to store the largest single member, 4 bytes in this case

to accommodate the floating point member.

Union members are accessed in the same way as structure members and union pointers are valid.

 uval.ival = 10 ;

 uval.cval = 'c' ;

When the union is accessed as a character we are only using the bottom byte of storage, when it

is accessed as a short integer the bottom two bytes etc. It is up to the programmer to ensure that

the element accessed contains a meaningful value.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

A union might be used in conjunction with the bit-field struct status in the previous section to

implement binary conversions in C.

For Example :-

 union conversion {

 unsigned short num ;

 struct status bits ;

 } number ;

Syntax of union:

union student

{

datatype member1;

datatype member2;

};

Like structure variable, union variable can be declared with definition or separately such as

union union name

{

Datatype member1;

}var1;

Example:- union student s;

Union members can also be accessed by the dot operator with union variable and if we have

pointer to union then member can be accessed by using (arrow) operator as with structure.

Example:- struct student

struct student

{

int i;

char ch[10];

};struct student s;

Here datatype/member structure occupy 12 byte of location is memory, where as in the union

side it occupy only 10 byte.

Nested of Union

When one union is inside the another union it is called nested of union.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Example:- union a

{

int i;

int age;

};

union b

{

char name[10];

union a aa;

}; union b bb;

There can also be union inside structure or structure in union.

Example:-

void main()

{

struct a

{

int i;

char ch[20];

};

struct b

{

int i;

char d[10];

};

union z

{

struct a a1;

struct b b1;

}; union z z1;

z1.b1.j=20;

z1.a1.i=10;

z1.a1.ch[10]= “ i“;

z1.b1.d[0]=”j “;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

printf(“ “);

Example Programs

Program to add two distances which is in feet and inches

#include <stdio.h>

struct Distance

{

 int feet;

 float inch;

} dist1, dist2, sum;

int main()

{

 printf("1st distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist1.feet);

 printf("Enter inch: ");

 scanf("%f", &dist1.inch);

 printf("2nd distance\n");

 printf("Enter feet: ");

 scanf("%d", &dist2.feet);

 printf("Enter inch: ");

 scanf("%f", &dist2.inch);

 // adding feet

 sum.feet = dist1.feet + dist2.feet;

 // adding inches

 sum.inch = dist1.inch + dist2.inch;

 // changing feet if inch is greater than 12

 while (sum.inch >= 12)

 {

 ++sum.feet;

 sum.inch = sum.inch - 12;

 }

 printf("Sum of distances = %d\'-%.1f\"", sum.feet, sum.inch);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

 return 0;

}

Output

 1st distance

 Enter feet: 12

 Enter inch: 7.9

 2nd distance

 Enter feet: 2

 Enter inch: 9.8

 Sum of distances = 15'-5.7"

Example: Store Information and Display it Using Structure

#include <stdio.h>

struct student

{

 char name[50];

 int roll;

 float marks;

} s;

int main()

{

 printf("Enter information:\n");

 printf("Enter name: ");

 scanf("%s", s.name);

 printf("Enter roll number: ");

 scanf("%d", &s.roll);

 printf("Enter marks: ");

 scanf("%f", &s.marks);

 printf("Displaying Information:\n");

 printf("Name: ");

 puts(s.name);

 printf("Roll number: %d\n",s.roll);

 printf("Marks: %.1f\n", s.marks);

 return 0;

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

}

Output: Enter information:

Enter name: Jack

Enter roll number: 23

Enter marks: 34.5

Displaying Information:

Name: Jack

Roll number: 23

Marks: 34.5

Example: Access structure members using pointer

#include <stdio.h>

struct person

{

 int age;

 float weight;

};

int main()

{

 struct person *personPtr, person1;

 personPtr = &person1;

 printf("Enter age:");

 scanf("%d", &personPtr->age);

 printf("Enter weight:");

 scanf("%f", &personPtr->weight);

 printf("Displaying:\n");

 printf("Age: %d\n", personPtr->age);

 printf("weight: %f", personPtr->weight);

 return 0;

}

Example: Access structure members using pointer

#include<stdio.h>

 struct dog

{

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

 char name[10];

 char breed[10];

 int age;

 char color[10];

};

int main()

{

 struct dog my_dog = {"tyke", "Bulldog", 5, "white"};

 struct dog *ptr_dog;

 ptr_dog = &my_dog;

 printf("Dog's name: %s\n", ptr_dog->name);

 printf("Dog's breed: %s\n", ptr_dog->breed);

 printf("Dog's age: %d\n", ptr_dog->age);

 printf("Dog's color: %s\n", ptr_dog->color);

 // changing the name of dog from tyke to jack

 strcpy(ptr_dog->name, "jack");

 // increasing age of dog by 1 year

 ptr_dog->age++;

 printf("Dog's new name is: %s\n", ptr_dog->name);

 printf("Dog's age is: %d\n", ptr_dog->age);

 // signal to operating system program ran fine

 return 0;

}

Example: Access structure members using pointer

#include <stdio.h>

struct my_structure {

 char name[20];

 int number;

 int rank;

};

int main()

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

{

 struct my_structure variable = {"StudyTonight", 35, 1};

 struct my_structure *ptr;

 ptr = &variable;

 printf("NAME: %s\n", ptr->name);

 printf("NUMBER: %d\n", ptr->number);

 printf("RANK: %d", ptr->rank);

 return 0;

}

Example: Access Union members using Structures

#include <stdio.h>

union unionJob

{

 //defining a union

 char name[32];

 float salary;

 int workerNo;

} uJob;

struct structJob

{

 char name[32];

 float salary;

 int workerNo;

} sJob;

int main()

{

 printf("size of union = %d", sizeof(uJob));

 printf("\nsize of structure = %d", sizeof(sJob));

 return 0;

}

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Example: Access Union members using Structures one union member can be accessed at a

time

#include <stdio.h>

union job

{

 char name[32];

 float salary;

 int workerNo;

} job1;

int main()

{

 printf("Enter name:\n");

 scanf("%s", &job1.name);

 printf("Enter salary: \n");

 scanf("%f", &job1.salary);

 printf("Displaying\nName :%s\n", job1.name);

 printf("Salary: %.1f", job1.salary);

 return 0;

}

Project: Simple C project by using structures/unions.

1. Let us introduce two new functions intended for strings. You may enter “You’re making me

blue” and then enter “All my loving”. Show the output and answer the questions.

#include <stdio.h>

void main()

{

char a[25], b[25];

puts("Name your favorite song title: ");

// gets(a); gets_s(a, 25);

puts("\nName another song title:");

// scanf("%s", &b);

scanf_s("%s", &b, 25);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

printf("\na = %s, b = %s\n", a, b);

}

a. Was the scanf_s() able to read the entire string or only the first word?

b. Was the gets_s() able to read the entire string or only the first word?

c. Did the gets_s() stop reading at the first space or the first return that was entered?

d. Did the puts() add a ‘\n’ at the end of the string that is printed?

e. Which function would you prefer to read in a string, scanf_s() or gets_s ()?

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

2. Firstly, enter “Ooowee Babe” and then 2.40 for the following program. Show the output and

answer the questions.

#include <stdio.h>

void main()

{

definition of structure struct Song

{

char Name[25]; float Length;

};

// end of definition

// variable declaration struct Song Title1;

printf("The size of Title1 structure variable is %d bytes.\n", sizeof(Title1)); puts("Name your

favorite song title: "); gets_s(Title1.Name, 25);

puts("How long is it?");

scanf_s("%f", &Title1.Length);

printf("\nYour song is ");

puts(Title1.Name);

printf("And it is %.2f min. long.\n", Title1.Length);

}

Just as the int and float are data types, struct Song is a new data type that we have defined.

a. What are the two known types used to define struct Song?

b. struct Song is defined with two members. What are their names?

c. Do the words char or float by themselves create new variables or allocate space in memory?

d. Since struct Song is also a new data type, do you think that it creates in itself a new variable?

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

e. Is a semicolon used at the end of the structure definition?

f. Since the definition of the structure doesn’t create a new variable, what is the name of the

variable declared using the struct Song data type?

g. Title1 is a new variable that takes up space in memory. How many parts does it have? What are

their names?

h. Show the contents of each member inside the box Title1.

i. An array is a collection of many items of the same data type, such as int or char. Similarly, a

structure data type is a collection of many items. Do they have to be of the same data type?

a. Only the first word.

b. The entire string.

c. The first return that was entered.

d. Yes it did.

e. Of course gets()/gets_s().

a. char and float.

b. Name and Length.

c. They allocate space in memory.

d. Yes it creates in itself a new variable.

e. Yes.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

f. Title1.

g. It has two parts named name and length.

j. When accessing a slot in an array, a set of brackets is used, such as a[2] = 0;. When we want to

access a member of a structure, what do we use?

k. How would you have assigned the Length member of Title1 to 0?

l. How would you have assigned the name member of Title1 to “Mr. Moonlighting”?

3. In the following program example enter “Riders on the Storm” and 3.10 for the sample input

data. Show the output and answer the questions.

i. No. structure can have different data types.

j. We use a dot operator and the structure's member name.

k. Title1.Length = 0;

l. Title1.Name = “Mr. Moonlighting”.

#include <stdio.h>

#include <string.h>

void main()

{

struct Song

{

char Name[25];

float Length;

};

struct Song Title1, Title2;

strcpy_s(Title2.Name, 25, "My Teardrops");

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Title2.Length = 2.35f;

puts("Name your favorite song:");

gets_s(Title1.Name, 25);

puts("How long is it?");

scanf_s("%f", &Title1.Length);

printf("\nMy song is %s\n Your song is ", Title2.Name); puts(Title1.Name);

printf("Yours is %.2f min. longer \n", Title1.Length - Title2.Length);

}

a. Can you print out both members of Title2 without specifying the member names as shown

below? Does this work?

printf("%s %.2f\n", Title2);

b. Can you assign Title2 to Title1 without specifying their members as shown below? Does this

work?

Title1 = Title2;

c. Does the following code work? Why or why not?

Title1.Name = Title2.Name

a. No, we can't and this doesn't work. We need the name of the member.

b. Yes we can and it does work provided that they both have same structure as in this example.

Here we assign the whole structure.

c. It doesn't work. We cannot assign the value of Title2.Name directly to Title1.Name but we can

copy the value as the following code:

strcpy_s(Title1.Name, 25, Title2.Name);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

UNIT III: Topics included

 Functions

 Functions: User-defined functions, categories of functions, parameter passing in

functions: call by value, call by reference, recursive functions. passing arrays to functions,

passing strings to functions, passing a structure to a function.

 User-Defined Functions:

C functions can be classified in two categories: Library functions and User defined

functions. The difference between this two functions is, Library functions are already

built in and we need not to write its code, whereas a User defined function has to be

written to get it executed during the output.

Need for User-Defined functions:

There are times when certain operation or calculation are to be repeated during a program.

For instance, we may use a factorial of a number or printing some string lines in the

program. In this situations we may repeat the code in our program .Here, user-defined

functions can be really helpful and can save our time and program space.

Syntax :

Explanation of the Syntax:

1) Function Header :

The first line in the above given syntax is known as header function. The function

header consists of three parts: function type, function name and the function

parameter list.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

- Function type: This may consist of the datatypes that you use. For example float, int,

double.

NOTE: If datatype is not specified then C will assume it as int type. And if the

function does not return any value then use void.

-Function name: This may consist of any variable that is suitable for user's

understanding. For example: If you have made user defined function for factorial then

use fact and if for simple multiplication then mul.

-Parameter List: It declares the variables that are to be used in the function and that are

going to be called in the program

2) Function Body:

The function body contains the declaration statement necessary for performing the

required task. The body enclosed in braces contain three parts:

-A return statement that returns the value evaluated by the function.

-Function statement that perform the task of the function.Using void as shown below:

Local declaration that specify the variable needed by the function.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

NOTE: If function does not return any value, we can omit the return statement.

Function call :

A function can be called simply using the function name followed by a list of

actual parameters(or arguments), if any enclosed in parentheses. Let's take an

example for multiplication of two numbers.

When the compiler encounters a function call, the control is transferred to the function

mul(). This function is then executed line by line as described and a value is returned

when a return statement is encountered. This value is assigned to y. This is illustrated

below:

Example of user-defined function

Write a C program to add two integers. Make a function add to add

integers and display sum in main() function.

/*Program to demonstrate the working of user defined function*/

#include <stdio.h>

int add(int a, int b); //function prototype(declaration)

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

int main(){

int num1,num2,sum;

printf("Enters two number to add\n");

scanf("%d %d",&num1,&num2);

sum=add(num1,num2); //function call

printf("sum=%d",sum);

}

int add(int a,int b) //function declarator

{

/* Start of function definition. */

int add;

add=a+b;

return add; //return statement of function /* End of function

definition. */ }

Function prototype(declaration):

Every function in C programming should be declared before they are used. These type

of declaration are also called function prototype. Function prototype gives compiler

information about function name, type of arguments to be passed and return type.

Syntax of function prototype

return_type function_name(type(1) argument(1),....,type(n) argument(n));

In the above example,int add(int a, int b); is a function prototype which provides

following information to the compiler:

1. name of the function is add()

2. return type of the function is int.

3. two arguments of type int are passed to function.

Function prototype are not needed if user-definition function is written before

main() function.

Function call

Control of the program cannot be transferred to user-defined function unless it is

called invoked).

Syntax of function call

function_name(argument(1),....argument(n));

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

In the above example, function call is made using statement add(num1,num2); from

main(). This make the control of program jump from that statement to function

definition and executes the codes inside that function.

Function definition

Function definition contains programming codes to perform specific task.

Passing arguments to functions:

In programming, argument/parameter is a piece of data(constant or variable) passed

from a program to the function.

In above example two variable, num1 and num2 are passed to function during

function call and these arguments are accepted by arguments a and b in function

definition.

Arguments that are passed in function call and arguments that are accepted in

function definition should have same data type. For example:

If argument num1 was of int type and num2 was of float type then, argument variable

a should be of type int and b should be of type float,i.e., type of argument during

function call and function definition should be same.

A function can be called with or without an argument.

Return Statement

Return statement is used for returning a value from function definition to calling function.

Syntax of return statement

return (expression);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

OR

return;

For example:

return;

return a;

return (a+b);

In above example, value of variable add in add() function is returned and that value is

stored in variable sum in main() function. The data type of expression in return

statement should also match the return type of function.

Types of User-defined Functions(Categories of Functions) in C:

For better understanding of arguments and return in functions, user-defined functions

can be categorised as:

1. Function with no arguments and no return value

2. Function with no arguments and return value

3. Function with arguments but no return value

4. Function with arguments and return value.

Let's take an example to find whether a number is prime or not using above 4

cateogories of user defined functions.

Function with no arguments and no return value.

/*C program to check whether a number entered by user is prime or not using function

with no arguments and no return value*/ #include <stdio.h>

void prime();

int main(){

prime(); //No argument is passed to prime().

return 0;

}

void prime(){

/* There is no return value to calling function main(). Hence, return type of prime() is

void */

int num,i,flag=0;

printf("Enter positive integer enter to check:\n");

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

scanf("%d",&num);

for(i=2;i<=num/2;++i){

if(num%i==0){

flag=1;

}

}

if (flag==1)

printf("%d is not prime",num);

else

printf("%d is prime",num);

}

Function prime() is used for asking user a input, check for whether it is prime of not

and display it accordingly. No argument is passed and returned form prime()

function.

Function with no arguments but return value

/*C program to check whether a number entered by user is prime or not using function

with no arguments but having return value */ #include <stdio.h>

int input();

int main(){

int num,i,flag;

num=input(); /* No argument is passed to input() */

for(i=2,flag=i;i<=num/2;++i,flag=i){

if(num%i==0){

* printf("%d is not prime",num);

++flag;

break;

}

}

if(flag==i)

printf("%d is prime",num);

return 0;

}

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

int input(){ /* Integer value is returned from input() to calling

function */

int n;

printf("Enter positive enter to check:\n");

scanf("%d",&n);

return n;

}

There is no argument passed to input() function But, the value of n is returned

from input() to main() function.

Function with arguments and no return value

/*Program to check whether a number entered by user is prime or not using function

with arguments and no return value */ #include <stdio.h>

void check_display(int n);

int main(){

int num;

printf("Enter positive enter to check:\n");

scanf("%d",&num);

check_display(num); /* Argument num is passed to function. */ return

0;

}

void check_display(int n){

/* There is no return value to calling function. Hence, return type of function is

void. */

int i,flag;

for(i=2,flag=i;i<=n/2;++i,flag=i){

if(n%i==0){

printf("%d is not prime",n);

++flag;

break;

}

}

if(flag==i)

printf("%d is prime",n);

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

}

Here, check_display() function is used for check whether it is prime or not and display

it accordingly. Here, argument is passed to user-defined function but, value is not

returned from it to calling function.

Function with argument and a return value

/* Program to check whether a number entered by user is prime or not using function

with argument and return value */ #include <stdio.h>

int check(int n);

int main(){

int num,num_check=0;

printf("Enter positive enter to check:\n");

scanf("%d",&num);

num_check=check(num); /* Argument num is passed to check() function. */

if(num_check==1)

printf("%d in not prime",num);

else

printf("%d is prime",num);

return 0;

}*

int check(int n){

/* Integer value is returned from function check() */ int i;

for(i=2;i<=n/2;++i){

if(n%i==0)

return 1;

}

return 0;

}

Here, check() function is used for checking whether a number is prime or not. In this

program, input from user is passed to function check() and integer value is returned

from it. If input the number is prime, 0 is returned and if number is not prime, 1 is

returned.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Parameter passing in functions: call by value, call by reference

In C Programming we have different ways of parameter passing schemes such as Call by Value

and Call by Reference.

Function is good programming style in which we can write reusable code that can be called

whenever require.

Whenever we call a function then sequence of executable statements gets executed. We can pass

some of the information to the function for processing called argument.

Two Ways of Passing Argument to Function in C Language :

Call by Reference

Call by Value

Let us discuss different ways one by one –

A.Call by Value :

#include<stdio.h>

void interchange(int number1,int number2)

{

 int temp;

 temp = number1;

 number1 = number2;

 number2 = temp;

}

int main() {

 int num1=50,num2=70;

 interchange(num1,num2);

 printf("\nNumber 1 : %d",num1);

 printf("\nNumber 2 : %d",num2);

 return(0);

}

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Output :

Number 1 : 50

Number 2 : 70

Explanation : Call by Value

While Passing Parameters using call by value , xerox copy of original parameter is created and

passed to the called function.

Any update made inside method will not affect the original value of variable in calling function.

In the above example num1 and num2 are the original values and xerox copy of these values is

passed to the function and these values are copied into number1,number2 variable of sum

function respectively.

As their scope is limited to only function so they cannot alter the values inside main function.

B.Call by Reference/Pointer/Address :

#include<stdio.h>

void interchange(int *num1,int *num2)

{

 int temp;

 temp = *num1;

 *num1 = *num2;

http://img.c4learn.com/2012/02/Call-by-Value-in-C-Programming-Scheme.gif

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

 *num2 = temp;

}

int main() {

 int num1=50,num2=70;

 interchange(&num1,&num2);

 printf("\nNumber 1 : %d",num1);

 printf("\nNumber 2 : %d",num2);

 return(0);

}

Output :

Number 1 : 70

Number 2 : 50

Explanation : Call by Address

While passing parameter using call by address scheme , we are passing the actual address of the

variable to the called function.

Any updates made inside the called function will modify the original copy since we are

directly modifying the content of the exact memory location.

http://img.c4learn.com/2012/02/Call-by-Pointer-or-Address-or-Reference-in-C-Programming-Scheme.gif

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Summary of Call By Value and Call By Reference :

Point Call by Value Call by Reference

Copy

Duplicate Copy of

Original Parameter

is Passed

Actual Copy of

Original Parameter

is Passed

Modification

No effect on

Original Parameter

after modifying

parameter in

function

Original Parameter

gets affected if

value of parameter

changed inside

function

Recursive functions:

A function that calls itself is known as recursive function and the process in which a function

calls itself is known as recursion in C programming.

Example of recursion in C programming

Write a C program to find sum of first n natural numbers using recursion. Note: Positive integers

are known as natural number i.e. 1, 2, 3....n

#include <stdio.h>

int sum(int n);

int main(){

int num,add;

printf("Enter a positive integer:\n");

scanf("%d",&num);

add=sum(num);

printf("sum=%d",add);

}

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

int sum(int n){

if(n==0)

return n;

else

return n+sum(n-1); /*self call to function sum() */

}

Output

Enter a positive integer:

5

15

In, this simple C program, sum() function is invoked from the same function. If n is not equal to

0 then, the function calls itself passing argument 1 less than the previous argument it was called

with. Suppose, n is 5 initially. Then, during next function calls, 4 is passed to function and the

value of argument decreases by 1 in each recursive call. When, n becomes equal to 0, the value

of n is returned which is the sum numbers from 5 to 1.

For better visualization of recursion in this example:

sum(5)

=5+sum(4)

=5+4+sum(3)

=5+4+3+sum(2)

=5+4+3+2+sum(1)

=5+4+3+2+1+sum(0)

=5+4+3+2+1+0

=5+4+3+2+1

=5+4+3+3

=5+4+6

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

=5+10

=15

Every recursive function must be provided with a way to end the recursion. In this example

when, n is equal to 0, there is no recursive call and recursion ends.

Advantages and Disadvantages of Recursion

Recursion is more elegant and requires few variables which make program clean. Recursion can

be used to replace complex nesting code by dividing the problem into same problem of its sub-

type.

In other hand, it is hard to think the logic of a recursive function. It is also difficult to debug the

code containing recursion.

 Comparison of Recursion and iteration

The differences between recursion and iteration cab be stated as below:

 Recursion Vs. Iteration

Recursion Iteration

Recursion is the term given to the mechanism

of defining a set or procedure in terms of

itself.

A conditional statement is required in the body

of the function for stopping the function

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

Iteration is the block of statement executed

repeatedly using loops.

The iteration control statement itself contains

statement for stopping the iteration. At every

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

 Recursion Vs. Iteration

Recursion Iteration

execution.

At some places, use of recursion generates

extra overhead. Hence, better to skip when

easy solution is available with iteration.

Recursion is expensive in terms of speed and

memory.

execution, the condition is checked.

All problems can be solved with iteration.

Iteration does not create any overhead. All the

programming languages support iteration.

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

The C programming language supports recursion, i.e., a function to call itself. But while

using recursion, programmers need to be careful to define an exit condition from the

function, otherwise it will go in infinite loop.

Recursive function are very useful to solve many mathematical problems like to

calculate factorial of a number, generating Fibonacci series, etc.

Number Factorial

Following is an example, which calculates factorial for a given number using a
recursive function:

#include <stdio.h>

int factorial(unsigned int i)
{

if(i <= 1)

{

return 1;
}

return i * factorial(i - 1);

}

int main()

{
int i = 15;

printf("Factorial of %d is %d\n", i, factorial(i)); return 0;
}

When the above code is compiled and executed, it produces the following result:
Factorial of 15 is 2004310016

Iterative version to find factorial of a number.

/* Iterative Version */
unsigned int iter_factorial(int n)

{

int f = 1;

int i;

for(i = 1; i <= n; i++)
{

f *= i;

}

return f;
}

Fibonacci Series

Following is another example, which generates Fibonacci series for a given number

using a recursive function:

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

#include <stdio.h>

int fibonaci(int i)

{

if(i == 0)

{

return 0;

}

if(i == 1)

{

return 1;

}

return fibonaci(i-1) + fibonaci(i-2);

}

int main()

{

int i;

for (i = 0; i < 10; i++)

{

printf("%d\t%n", fibonaci(i));

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

0 1 1 2 3 5 8 13 21 34

Iterative version to find Fibonacci series

int Fibonacci(int n)

{

Problem Solving with Programming Course Material

 Department of Computer Science and Engineering

int f1 = 0;

int f2 = 1;

int fn;

for (int i = 2; i < n; i++)

Problem Solving with Programming Course Material

{

fn = f1 + f2;

f1 = f2;

f2 = fn;

}

}

Array can be passed to function by two ways :

1. Pass Entire array

2. Pass Array element by element

1 . Pass Entire array

 Here entire array can be passed as a argument to function .

 Function gets complete access to the original array .

 While passing entire array Address of first element is passed to function , any

changes made inside function , directly affects the Original value .

 Function Passing method : “Pass by Address“

 2 . Pass Array element by element

 Here individual elements are passed to function as argument.

 Duplicate carbon copy of Original variable is passed to function .

 So any changes made inside function does not affects the original value.

 Function doesn’t get complete access to the original array element.

 Function passing method is “Pass by Value“

Passing entire array to function :

Parameter Passing Scheme : Pass by Reference

 Pass name of array as function parameter .

 Name contains the base address i.e (Address of 0th element)

 Array values are updated in function .

 Values are reflected inside main function also.

#include<stdio.h>

#include<conio.h>

void fun(int arr[])

{

Problem Solving with Programming Course Material

int i;

for(i=0;i< 5;i++)

 arr[i] = arr[i] + 10;

}

void main()

{

int arr[5],i;

clrscr();

printf("\nEnter the array elements : ");

for(i=0;i< 5;i++)

 scanf("%d",&arr[i]);

printf("\nPassing entire array");

fun(arr); // Pass only name of array

for(i=0;i< 5;i++)

 printf("\nAfter Function call a[%d] : %d",i,arr[i]);

getch();

}

Output :

Enter the array elements : 1 2 3 4 5

Passing entire array

After Function call a[0] : 11

After Function call a[1] : 12

After Function call a[2] : 13

After Function call a[3] : 14

After Function call a[4] : 15

Problem Solving with Programming Course Material

Graphical Flowchart :

Passing Entire 1-D Array to Function in C Programming

Array is passed to function Completely.

Parameter Passing Method : Pass by Reference

 It is Also Called “Pass by Address“

 Original Copy is Passed to Function

 Function Body Can Modify Original Value.

Example :

#include<stdio.h>

#include<conio.h>

void modify(int b[3]);

void main()

{

int arr[3] = {1,2,3};

modify(arr);

for(i=0;i<3;i++)

 printf("%d",arr[i]);

getch();

}

void modify(int a[3])

Problem Solving with Programming Course Material

{

int i;

for(i=0;i<3;i++)

 a[i] = a[i]*a[i];

}

Output :

1 4 9

Passing array element by element to function :

 Individual element is passed to function using Pass By Valueparameter passing

scheme

 Original Array elements remains same as Actual Element is never Passed to

Function. thus function body cannot modify Original Value.

 Suppose we have declared an array ‘arr[5]’ then its individual elements are

arr[0],arr[1]…arr[4]. Thus we need 5 function calls to pass complete array to a function.

Tabular Explanation :

Consider following array

int arr[5] = {11,22,33,44,55};

Iteration
Element Passed to

Function

Value of

Element

1 arr[0] 11

2 arr[1] 22

3 arr[2] 33

4 arr[3] 44

5 arr[4] 55

C Program to Pass Array to Function Element by Element :

#include< stdio.h>

#include< conio.h>

void fun(int num)

{

Problem Solving with Programming Course Material

printf("\nElement : %d",num);

}

void main()

{

int arr[5],i;

clrscr();

printf("\nEnter the array elements : ");

for(i=0;i< 5;i++)

 scanf("%d",&arr[i]);

printf("\nPassing array element by element.....");

for(i=0;i< 5;i++)

 fun(arr[i]);

getch();

}

Output :

Enter the array elements : 1 2 3 4 5

Passing array element by element.....

Element : 1

Element : 2

Element : 3

Element : 4

Element : 5

Disadvantage of this Scheme :

This type of scheme in which we are calling the function again and again but with different array

element is too much time consuming. In this scheme we need to call function by pushing the

current status into the system stack.

It is better to pass complete array to the function so that we can save some system time required for

pushing and popping.

Passing strings to functions:

Function declaration to accept one dimensional string

We know that strings are saved in arrays so, to pass an one dimensional array to a function we will

have the following declaration.

Problem Solving with Programming Course Material

returnType functionName(char str[]);

Example:

void displayString(char str[]);

In the above example we have a function by the name displayString and it takes an argument of

type char and the argument is an one dimensional array as we are using the [] square brackets.

Passing one dimensional string to a function

To pass a one dimensional string to a function as an argument we just write the name of the string

array variable.

In the following example we have a string array variable message and it is passed to

the displayString function.

#include <stdio.h>

void displayString(char []);

int main(void) {

 // variables

 char

 message[] = "Hello World";

 // print the string message

 displayString(message);

 return 0;

}

void displayString(char str[]) {

 printf("String: %s\n", str);

}

Output:

String: Hello World

Another way we can print the string is by using a loop like for or while and print characters till we

hit the NULL character.

In the following example we have redefined the displayString function logic.

#include <stdio.h>

Problem Solving with Programming Course Material

void displayString(char []);

int main(void) {

 // variables

 char

 message[] = "Hello World";

 // print the string message

 displayString(message);

 return 0;

}

void displayString(char str[]) {

 int i = 0;

 printf("String: ");

 while (str[i] != '\0') {

 printf("%c", str[i]);

 i++;

 }

 printf("\n");

}

Output:

String: Hello World

Function declaration to accept two dimensional string

In order to accept two dimensional string array the function declaration will look like the following.

returnType functionName(char [][C], type rows);

Example:

void displayCities(char str[][50], int rows);

In the above example we have a function by the name displayCities and it takes a two dimensional

string array of type char.

The str is a two dimensional array as because we are using two [][] sqaure brackets.

It is important to specify the second dimension of the array and in this example the second

dimension i.e., total number of columns is 50.

Problem Solving with Programming Course Material

The second parameter rows tell us about the total number of rows in the give two dimensional

string array str.

The return type for this function is set to void that means it will return no value.

Passing two dimensional string to a function

To pass a two dimensional string to a function we just write the name of the string array variable as

the function argument.

In the following example we have the name of 5 cities saved in an array cities of type char. We will

be using the displayCitiesfunction to print the names.

#include <stdio.h>

void displayCities(char [][50], int rows);

int main(void) {

 // variables

 char

 cities[][50] = {

 "Bangalore",

 "Chennai",

 "Kolkata",

 "Mumbai",

 "New Delhi"

 };

 int rows = 5;

 // print the name of the cities

 displayCities(cities, rows);

 return 0;

}

void displayCities(char str[][50], int rows) {

 // variables

 int r, i;

 printf("Cities:\n");

Problem Solving with Programming Course Material

 for (r = 0; r < rows; r++) {

 i = 0;

 while(str[r][i] != '\0') {

 printf("%c", str[r][i]);

 i++;

 }

 printf("\n");

 }

}

Output:

Cities:

Bangalore

Chennai

Kolkata

Mumbai

New Delhi

Passing a structure to a function:

 A structure can be passed to any function from main function or from any sub

function.

 Structure definition will be available within the function only.

 It won’t be available to other functions unless it is passed to those functions by value

or by address(reference).

 Else, we have to declare structure variable as global variable. That means, structure

variable should be declared outside the main function. So, this structure will be visible to all

the functions in a C program.

It can be done in below 3 ways.

 Passing structure to a function by value

 Passing structure to a function by address(reference)

 No need to pass a structure – Declare structure variable as global

EXAMPLE PROGRAM – PASSING STRUCTURE TO FUNCTION IN C BY VALUE:

In this program, the whole structure is passed to another function by value. It means the whole

structure is passed to another function with all members and their values. So, this structure can be

accessed from called function. This concept is very useful while writing very big programs in C.

Problem Solving with Programming Course Material

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <stdio.h>

#include <string.h>

struct student

{

 int id;

 char name[20];

 float percentage;

};

void func(struct student record);

int main()

{

 struct student record;

 record.id=1;

 strcpy(record.name, "Raju");

 record.percentage = 86.5;

 func(record);

 return 0;

}

void func(struct student record)

{

 printf(" Id is: %d \n", record.id);

 printf(" Name is: %s \n", record.name);

 printf(" Percentage is: %f \n", record.percentage);

}

OUTPUT:

Id is: 1

Name is: Raju

Percentage is: 86.500000

EXAMPLE PROGRAM – PASSING STRUCTURE TO FUNCTION IN C BY ADDRESS:

In this program, the whole structure is passed to another function by address. It means only the

address of the structure is passed to another function. The whole structure is not passed to another

function with all members and their values. So, this structure can be accessed from called function

by its address.

Problem Solving with Programming Course Material

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

#include <stdio.h>

#include <string.h>

struct student

{

 int id;

 char name[20];

 float percentage;

};

 void func(struct student *record);

 int main()

{

 struct student record;

 record.id=1;

 strcpy(record.name, "Raju");

 record.percentage = 86.5;

 func(&record);

 return 0;

}

 void func(struct student *record)

{

 printf(" Id is: %d \n", record->id);

 printf(" Name is: %s \n", record->name);

 printf(" Percentage is: %f \n", record-

>percentage);

}

OUTPUT:

Id is: 1

Name is: Raju

Percentage is: 86.500000

EXAMPLE PROGRAM TO DECLARE A STRUCTURE VARIABLE AS GLOBAL IN C:

Problem Solving with Programming Course Material

Structure variables also can be declared as global variables as we declare other variables in C. So,

When a structure variable is declared as global, then it is visible to all the functions in a program. In

this scenario, we don’t need to pass the structure to any function separately.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

#include <stdio.h>

#include <string.h>

 struct student

{

 int id;

 char name[20];

 float percentage;

};

struct student record; // Global declaration of structure

 void structure_demo();

 int main()

{

 record.id=1;

 strcpy(record.name, "Raju");

 record.percentage = 86.5;

 structure_demo();

 return 0;

}

 void structure_demo()

{

 printf(" Id is: %d \n", record.id);

 printf(" Name is: %s \n", record.name);

 printf(" Percentage is: %f \n", record.percentage);

}

OUTPUT:

Id is: 1

Name is: Raju

Percentage is: 86.500000

Problem Solving with Programming Course Material

C – Storage Class Specifiers

Storage class specifiers in C language tells the compiler where to store a variable, how to store the

variable, what is the initial value of the variable and life time of the variable.

Syntax:

storage_specifier data_type variable _name;

TYPES OF STORAGE CLASS SPECIFIERS IN C:

There are 4 storage class specifiers available in C language. They are,

1. auto

2. extern

3. static

4. register

Storage

Specifier Description

auto

Storage place: CPU Memory

Initial/default value: Garbage

value

Scope: local

Life: Within the function only.

extern

Storage place: CPU memory

Initial/default value: Zero

Scope: Global

Life: Till the end of the main

program. Variable definition

might be anywhere in the C

program.

static

Storage place: CPU memory

Initial/default value: Zero

Scope: local

Life: Retains the value of the

variable between different

Problem Solving with Programming Course Material

function calls.

register

Storage place: Register memory

Initial/default value: Garbage

value

Scope: local

Life: Within the function only.

NOTE:

 For faster access of a variable, it is better to go for register specifiers rather than auto specifiers.

 Because, register variables are stored in register memory whereas auto variables are stored in main

CPU memory.

 Only few variables can be stored in register memory. So, we can use variables as register that are

used very often in a C program.

1. EXAMPLE PROGRAM FOR AUTO VARIABLE IN C:

The scope of this auto variable is within the function only. It is equivalent to local variable. All

local variables are auto variables by default.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include<stdio.h>

void increment(void);

int main()

{

 increment();

 increment();

 increment();

 increment();

 return 0;

}

 void increment(void)

{

 auto int i = 0 ;

 printf ("%d ", i) ;

 i++;

}

Problem Solving with Programming Course Material

OUTPUT:

0 0 0 0

2. EXAMPLE PROGRAM FOR STATIC VARIABLE IN C:

Static variables retain the value of the variable between different function calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

//C static example

#include<stdio.h>

void increment(void);

int main()

{

increment();

increment();

increment();

increment();

return 0;

}

void increment(void)

{

static int i = 0 ;

printf ("%d ", i) ;

i++;

}

OUTPUT:

0 1 2 3

3. EXAMPLE PROGRAM FOR EXTERN VARIABLE IN C:

The scope of this extern variable is throughout the main program. It is equivalent to global variable.

Definition for extern variable might be anywhere in the C program.

1

2

3

4

5

#include<stdio.h>

 int x = 10 ;

int main()

{

extern int y;

Problem Solving with Programming Course Material

6

7

8

9

10

11

printf("The value of x is %d \n",x);

printf("The value of y is %d",y);

return 0;

}

int y=50;

OUTPUT:

The value of x is 10

The value of y is 50

4. EXAMPLE PROGRAM FOR REGISTER VARIABLE IN C:

 Register variables are also local variables, but stored in register memory. Whereas, auto variables

are stored in main CPU memory.

 Register variables will be accessed very faster than the normal variables since they are stored in

register memory rather than main memory.

 But, only limited variables can be used as register since register size is very low. (16 bits, 32 bits or

64 bits)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include <stdio.h>

int main()

{

 register int i;

 int arr[5];// declaring array

 arr[0] = 10;// Initializing array

 arr[1] = 20;

 arr[2] = 30;

 arr[3] = 40;

 arr[4] = 50;

 for (i=0;i<5;i++)

 {

 // Accessing each variable

 printf("value of arr[%d] is %d \n", i, arr[i]);

 }

 return 0;

Problem Solving with Programming Course Material

17 }

OUTPUT:

value of arr[0] is 10

value of arr[1] is 20

value of arr[2] is 30

value of arr[3] is 40

value of arr[4] is 50

Simple C Project: At the end of the Unit III every student should take up this project.

Write a program that takes input of employee information like

1) Id

2) Name

3) Birth date

4) Salary

And provides below functionality

1) Search on name

2) Sort on ID

3) Sort on Name

4) Sort on Birth Date

5) Sort on Salary

6) Show all Records

using nested structures and functions.

UNIT IV: TOPICS INCLUDED

File Management

Data Files, opening and closing a data file, creating a data file, processing a data file, unformatted

data files.

Project: Simple C project by using files.

CONCEPT OF A FILE

Generally we write programs to display the data on the screen the data which is displayed is limited

(i.e, not more than 24 lines). If we want to display more than 24 lines the last 24 lines are only

viewed. When we execute a program the output is stored in volatile memory (RAM) and its

contents would be lost once the program is terminated. So if we need the same data again we have

to re-execute the program with same input.

Problem Solving with Programming Course Material

Obviously both these operations would be tedious. At such time it becomes necessary to store the

data in a manner that can be later retrieved and displayed either in part or in whole. This medium is

usually a ‘file’ on secondary storage.

The type FILE is a structure defined in the stdio.h file. C requires a file pointer to a FILE type to

access a file or to perform the various file operations, the pointer name can be any valid identifier

name. A file is an external collection of related data treated as a unit.

A file may be stored on anything from a disk (hard disk, CD, DVD) or a tape drive. To access a file

first of all we need to open the file by performing an open operation. Once a file is opened,

information may be exchanged between file and our program using a temporary area called buffer.

Not all files have the same capabilities. For example, a disk file can support random access while

tape drives cannot.

A Stream is flow of bytes of data. All streams are the same but all files are not. If the file can

support position requests, opening that file also initializes the file position indicator to the start of

the file. As each character is read from or written to the file, the position indicator is incremented

till it reaches EOF (End of File). After which we can close the file by performing close operation.

Even if we wont perform the close operation all files are closed automatically when our program

terminates normally, either by main() or by a call to exit(). Files are not closed when a program

terminates abnormally, such as when it crashes or when it calls abort(). Each stream that is

associated with a file has a file control structure of type FILE. There are different operations that

can be carried out on a file. These are:

 Creating a new file.

 Opening an existing file.

 Reading from a file.

 Writing to a file.

 Moving to a specific location in a

file.

 Closing a file.

In order to read or write files, our program needs to use file pointers. To obtain a file pointer

variable, we use a statement like this: FILE *fp;

Problem Solving with Programming Course Material

File name: Whenever we create a new file using our program we need to follow some naming

conventions provided by concerned operating system to provide a file name. For example

according to windows operating system a file name can be any number of characters,

File information table: All data stored on the disk is in binary format (0 or 1). How this binary

data is stored on the disk varies from one Operating system to another. However, this doesn’t affect

since we use the library functions written for the particular Operating system to be able to perform

input/output. It is the compiler vendor’s responsibility to correctly implement these library

functions.

To implement library functions a program requires several File information such as operating

system, Name of the file, Position of the current character in file,.. All such information is handled

by stdio.h file. Language compiler maintains a table to maintain all such information called as File

Information Table. For example: DOS records the location of every directory and file on a disk in a

table called the FAT (File Allocation Table).

STREAMS

A stream is an entity created by a program. A stream is an abstraction that represents a device on

which input and output operations are performed. A stream can basically be represented as a source

or destination of characters of indefinite length. Streams are generally associated to a physical

source or destination of characters, like a disk file, the keyboard, or the console, so the characters

are written to/from a stream which is physically input or output to the physical device.

Text and binary streams

A text stream is a sequence of characters. Standard C allows a text stream to be organized into

lines terminated by a newline character (‘\n’). The newline character is optional. In a text stream,

certain character translations may occur as required by the computer. For example, a newline may

be converted to a carriage return or linefeed pair. Therefore, there may not be a one-to-one

relationship between the characters that are written (or read) and those on the external device.

Also, because of possible translations, the number of characters written (or read) may not be the

same as those on the external device.

Problem Solving with Programming Course Material

A binary stream is a sequence of bytes consists of data such as integers, real values or complex

numbers. These streams have a one-to-one correspondence to those in the external device that is,

no character translations occur. The number of bytes written (or read) is the same as the number on

the external device. However, an implementation-defined number of null bytes may be appended to

a binary stream. These null bytes might be used to fill a sector on a disk.

There are four steps to process a file:

 Create a stream: we create a stream by declaring a file pointer of type FILE structure. For

Example: FILE* fp; here fp is a pointer to stream(stream pointer) which holds the starting address

of stream.

 Open a file: once we create a file pointer we can open a file using the standard open

function. When the file is opened both file and stream are linked to each other. The file open

function returns the address of file type, which is stored in stream pointer variable fp.

 Read or write data: after creating the stream name we can use the stream pointer to use

any stream function (read or write) data using its corresponding stream. If a program reads data

from a file then the stream used is Input Text Stream. If a program stores data to a file then the

stream used is Output Text Stream. We can read the data till we reach the end of the file (EOF).

 Close the file: once the file processing is completed we can close the file using close

function. Closing breaks the link between the stream name and the file name. After closing the file

the contents on the stream are destroyed automatically since stream is created on buffer (temporary

memory), which is also called as flushing.

System created streams: C has three system created streams (pointers) available in stdio.h file:

Stream Details

stdin
Returns the numeric value corresponding to the standard input stream. This is filtered

through the command line editing functions.

stdout
Returns the numeric value corresponding to the standard output stream. Data written

to the standard output is normally filtered through the pager.

stderr
Returns the numeric value corresponding to the standard error stream. It is useful for

error messages and prompts.

We should not create any stream names using stdin or stdout or stderr since there streams are

already declared in stdio.h file. The association in between all these three standard streams,

Problem Solving with Programming Course Material

keyboard and monitor is done automatically. There fore we can open a file but we cannot open a

standard stream in our program code. Like files we need to close streams also at the end of the

program, or else when program terminates they are closed automatically.

STANDARD INPUT & OUTPUT FUNCTIONS

All the input & output functions are declared in stdio.h header file, which are mainly divided into

eight different categories & they are:

 File Open/close.

 Formatted input/output.

 Character input/output.

 Line input/output.

 Block input/output.

 File Positioning.

 System File Operations.

 File Status.

Problem Solving with Programming Course Material

FILE *fp;
if ((fp = fopen("test","w"))==NULL)
{ printf("Cannot open file.\n");

exit(1);
}

File open: The fopen() function opens a stream and links file with that stream. Then it returns

the file pointer associated with that file. Syntax: FILE *fopen(const char *filename, const

char *mode);

Where filename is a pointer to a string of

characters which is a valid filename (may

include file path). mode determines how

the file will be opened. Table shows the

legal values for mode. Strings like "r+b"

may also represent as "rb+."

The fopen() function returns a file pointer.

Our program should never alter the value

of this pointer. If an error occurs while

opening file, fopen() returns a null

pointer.

In example the fopen() is used to open a

file named test for output. fopen() will

detect an error while opening a file which is write-

protected or when disk is full. That’s why we need to

confirm that fopen() succeeded before attempting to perform any operations on the file.

When opening a file for read-only operations, the file does not exist, fopen() will fail. When

opening a file using append mode, if the file does not exist, it will be created. Further, when a

file is opened for append, all new data written to the file will be written to the end of the file.

The original contents will remain unchanged. If, when a file is opened for writing, the file does

not exist, it will be created. If it does exist, the contents of the original file will be destroyed and

a new file created. The difference between modes r+ and w+ is that r+ will not create a file if it

Mode Meaning

r Open a text file for reading.

W Create a text file for writing.

a Append to a text file.

rb Open a binary file for reading.

wb Create a binary file for writing.

ab Append to a binary file.

r+ Open a text file for read/write.

w+ Create a text file for read/write.

a+ Append or create a text file for read/write.

r+b Open a binary file for read/write.

w+b Create a binary file for read/write.

a+b
Append or create a binary file for

read/write.

Problem Solving with Programming Course Material

fscanf(stdin, "%s%d", s, &t); /* read from keyboard */
fscanf(fp, "%s%d", s, &t); /* read from file */

fprintf(stdout, "%s %d", s, t); /* print on screen */
fprintf(fp, "%s %d", s, t); /* write to file */

does not exist; however, w+ will. If the file already exists, opening it with w+ destroys its

contents; opening it with r+ does not.

File Close:

The fclose() function closes a stream that was opened by a call to fopen(). It writes any data still

remaining in the disk buffer to the file closes the file. Failure to close a stream invites all kinds of

trouble, including lost data, destroyed files, and possible intermittent errors in your program.

fclose() also frees the file control block associated with the stream, making it available for reuse.

There is an operating-system limit to the number of open files you may have at any one time, so

you may have to close one file before opening another. The fclose() function has this prototype:

int fclose(FILE *fp);

Where fp is the file pointer returned by the call to fopen(). A successful close operation returns

value zero. The function returns EOF if an error occurs. You can use the standard function

ferror() to determine and report any problems. Generally, fclose() will fail only when a disk has

been prematurely removed from the drive or there is no more space on the disk.

FORMATTED INPUT AND OUTPUT FUNCTIONS

printf and scanf are the two standard functions which are used regularly in our programs. The

scanf function receives a text stream from the stdin (keyboard) and stores stream in variables.

The printf function receives data from program which is converted into text stream which is

displayed on the stdout (monitor).

Apart from displaying and reading text streams from keyboard and to monitor we can store or

retrieve streams to or from files. Standard c provides two general purpose functions fscanf and

fprintf which are available in stdio.h file.

Syntax: int fprintf(FILE *fp, const char *control_string,. . .);

int fscanf(FILE *fp, const char *control_string,. . .);

In example fp is a file pointer

returned by a call to fopen() may be

to any file. Here s is a string variable

Problem Solving with Programming Course Material

Option Field Particulars

% Percentage

Flag ‘-' left justify; '+' right justify; '0' zero padding;

Minimum width Minimum number of characters can be read

precision Sets the maximum number of characters after’.’ dot.

Size h-short; l-long; l-double; L-long double;

Conversion Code d-int; s-string; c-char; f-float; u-unsigned int;…

and t is an integer variable where we want to store or retrieve values i.e., a string and int value.

Format control strings: When we read or write the data to or from a file the functions fscanf

and fprintf uses format strings, %d for int, %s for string are written in above examples i.e.,

conversion specification as part of format string. A format string may comprise of a whitespace

or Text characters or the conversion specifications, which represents the type of data stored in

a file.

 A whitespace or a tab ‘\t’ character in fscanf function causes leading whitespaces in format

string causes zero, one or more whitespaces in input stream to be omitted. Where as a whitespace

characters or tab ‘\t’ in fprintf function will copy whitespaces as it is to the file.

 Any Text character other than a whitespace in a fscanf function must exactly match with

fprintf function that is, if we store first a int value then a string value in a file. We need to read

in the same order other wise a

conflict will raise which leads to

abnormal termination, and the

conflicting text will be available

in the stream to be read by the

next input operation.

 The conversion specification consists of a percent character ‘%’, optional formatting

instructions, and a conversion code.

A scanf or fscanf functions will contain beside conversion specification:

A printf or fprintf

functions will contain

beside conversion

specification:

Input formatting (scanf & fscanf): The difference between scanf and fscanf is scanf reads data

from stdin and fscanf reads data from the first parameter specified that is a stream. scanf

means Scan Formatted and fscanf means File Scan Formatted.

Problem Solving with Programming Course Material

We must specify the address for every variable in order to store the data to that specified

variable. If we don’t do this the result is unpredictable. The data is red in scanf or fscanf till

either it reaches end of file or in appropriate character is encountered (while reading an int value

if a char is encountered) or the number of characters red is equal to explicitly specified

maximum field width.

The conversion specifications of scanf and fscanf functions are:

 Flag: the only flag for input formatting allowed is * (assignment suppression) which tells

scanf to read the data but not to store in variable. For example scanf(“%d%*c%d”. &x, &y);.

The function will read a integer a character and then again a integer, only integer values are

stored to x & y the character is discarded (not stored).

 Width: specifies the allowed maximum width of input in characters. That may allow us to

display the content in a neat manner by storing the whitespaces if the characters are less than

width. For example: scanf(“%3d”,&n); will read only 3 characters.

 Size: is a modifier for conversion code. Where h can be used for representing short data, l

can be used for long and double as (%ld for long and %lf for double and %Lf for long

double).

sacnf and fscanf functions returns side effect when it reads and converts a stream of characters

from the input file and stores the converted values in the list of variables found in the address

list. sacnf and fscanf functions returns value when it returns the number of successful data

conversions if end of file is reached before any data are converted, it returns EOF.

The major side effect with scanf while reading an input stream is: the input stream is stored in

the buffer by operating system without passing the data until we press the enter key. This means

there is always there is a return character associated with the string at end in the buffer, this

character is not read by the scanf function, means return character is still available in the buffer.

When scanf reads the next value from buffer it must discard the existing return character

available in buffer left by previous scanf. This can be done using assignment suppression flag

‘*’.

Problem Solving with Programming Course Material

One more concern with scanf function is it wont terminate until the format string is completed,

means if we want to read 3 values for example scanf(“%d%d%d”, &a, &b, &c);. This

function will terminate only when it reads all the three values, means the scanf function

terminates when the format string is completed. Whenever a whitespace is encountered in scanf

it replaces a return character in the place of a whitespace.

Output formatting (printf & fprintf): These functions will print the data in human readable

format. The format string of printf is similar to that of a scanf function but the working of both

the functions is opposite.

The conversion specifications of printf and fprintf functions are:

 Flag: the justification flag controls the placement of a value when it is shorter than the

specified value. Printf and fprintf allows only left ‘-‘justification or right justification (if ‘–‘is not

specified).

 Padding: specifies how to fill the unused space when the value is smaller than the

specified width. It can be a space(default) or may be a 0(zero). For example: printf(“%05d”,n);

if n has value 10. The output will be 00010.

 Sign Flag: is used with the numeric values to represent whether a value is a negative or

positive value by using –(minus) or +(plus) signs. If the value is a space then positive value is

printed.

 Alternative Flag #: is used with real, hexadecimal, octal conversion codes.

 Precision: can be used to specify the period followed by an integer value. The number of

digits needs to be printed after the decimal point (zeros).

 Width and Size: same as scanf functions.

The major side effect with printf functions regarding a output stream is while writing text data

that may be either strings or characters has to get converted to their equivalent values which may

be printed on standard output or stored to a file. printf and fprintf functions returns value when

it returns the number of characters written to output file. In case of it reaches end of file EOF.

TEXT VS BINARY FILES

Problem Solving with Programming Course Material

In c language files are of two types’ text and binary files. Depending on our program

requirement we can use any one of the type. Both the types are having their own importance and

usage criteria.

Text Files:

In a text file data is stored as a sequence of characters, which is human readable. Text files are

written using text streams. We can use fprintf, fscanf functions to handle text files, in both the

cases text is converted to internal format based on the conversion specifications. We can also

use character input output functions getchar, putchar for reading or writing character by

character.

A text files can contain any type of data. There is no limit to the number of entries that we can

write in a text file. We can also use white space (empty lines) throughout the file. We should

note that surrounding spaces are not included with an individual line when it is stored or

retrieved.

Binary Files:

A binary file is a collection of data stored that is only understandable by computer or the data is

stored in a file as if it is stored in the same manner of that of file stored in memory. Binary data

is read or written using binary streams. Here data is moved or retrieved in a block manner, not

character by character as in text files.

Differences between Text & Binary Files:

In a text file all the data is human readable, each line ends with a new line character ‘\n’ and

every file ends with a special character called as end of file EOF character. Where as a binary

file stores data in internal computer format i.e., a integer value is stored in 4 bytes a character

value is stored in 1 byte and so on. There are no new line characters but end of file character is

available in binary files.

For example if we want to store 123 a integer value in text files ‘1’, ‘2’,’3’ are stored as

independent characters in 3 bytes continuously, where as in binary files since 123 is a integer

value it is stored as a single value in 4 bytes of memory.

Problem Solving with Programming Course Material

State of a file: A file may be in any one of the four states: read or write or error or update

State.

 Read State: if we want our program to read data from a file then it must be in read state,

means we need to open the file in a mode which leaves the file in a read state.

 Write State: if we want our program to write some data from our program to a file then

the file must be in write state, means we need to open the file such that it leaves the file in a write

state. If the file is not available with the name specified while opening, a new file is created with

the same name.

To open a file in write state we can open a file either in write mode or append mode. If we open

the file in write mode the data is written from beginning of file, if any data is already available

will be lost. When a program opens the file in a append mode, if file exist then the new data

will be written at the end of file, if file does not exist then a new file is created then the data is

returned to the file.

 Error State: is resulted when an error is raised may be due to any reason: for example if

program opens a file which doesn’t exist in read mode. If program try’s to write data in a file

which is opened in write mode.

 Update State: to open a file in update mode we can use + symbol, for example: r+ for

read state, w+ and a+ the file will be in write state. Update state allows a file to be in both read

state or write state, but at a time only one state is allowed.

FILE INPUT AND OUTPUT FUNCTIONS

To write binary data in a file we require functions which can perform block input and output.

When we read or write binary files the data is similar to the data available in the memory storage

(0 or 1). There are no format conversions for binary files means we cant use fscanf and fprintf

functions (used only for text files). We use fread and fwrite functions for storing and retrieving

the data to or from binary files.

fread & fwrite: To read and write data types that are longer than one byte (int, float, double,…)

means a block of data, the C file system provides two functions: fread() and fwrite(). These

Problem Solving with Programming Course Material

do {

ch = getc(fp);
} while(ch!=EOF);

functions allow the reading and writing of blocks of any type of data to or from a binary file.

Their prototypes are:

size_t fread(void *buffer, size_t num_bytes, size_t count, FILE *fp);

size_t fwrite(const void *buffer, size_t num_bytes, size_t count, FILE *fp);

For fread(), buffer is a pointer to a region of memory that will receive the data from the file. For

fwrite(), buffer is a pointer to the information that will be written to the file. The value of count

determines how many items are read or written, with each item being num_bytes bytes in

length. (Remember, the type size_t is defined as some type of unsigned integer.) Finally, fp is a

file pointer to a previously opened stream. The fread() function returns the number of items

read. This value may be less than count if the end of the file is reached or an error occurs. The

fwrite() function returns the number of items written. This value will equal to count unless an

error occurs.

As long as the file has been opened for binary data, fread() and fwrite() can read and write any

type of information. One of the most useful applications of fread() and fwrite() involves reading

and writing user-defined data types, especially structures.

Writing a Character: The putc() function writes characters to a file that was previously opened

for writing using the fopen() function. The prototype of this function is: int putc(int ch, FILE

*fp); where fp is the file pointer returned by fopen() and ch is the character to be output. The file

pointer tells putc() which file to write to. If a putc() operation is successful, it returns the

character written. Otherwise, it returns EOF.

Reading a Character: The getc() function reads characters from a file opened in read mode by

fopen(). The prototype of getc() is: int getc(FILE *fp); where fp is a file

pointer of type FILE returned by fopen(). getc() returns an integer, unless an

error occurs, and returns an EOF when the end of the file has been reached. Therefore, to read to

the end of a text file, you could use the following code:

However, getc() also returns EOF if an error occurs. We can use ferror() to determine what

happened.

Problem Solving with Programming Course Material

FILE STATUS FUNCTIONS

Feof: is used to check whether the end of file has been encountered. The file system can operate

on both text and binary files. When a file is opened for binary input, an integer value that will

test equal to EOF may be read. This would cause the input function to indicate an end-of-file

condition even though the physical end of the file had not been reached.

Function getc() also returns EOF when it fails and when it reaches the end of the file. Using only

the return value of getc(), it is impossible to know which occurred. To solve these problems, the

C file system includes the function feof(), which determines when the end of the file has been

encountered.

The feof()prototype: int feof(FILE *fp); this returns true if the end of the file has been reached;

otherwise, it returns 0. Therefore, the following example reads a binary file until the end of the

file is encountered: while(!feof(fp)) ch = getc(fp);

Ferror: function determines whether a file operation has produced an error. The ferror()

function has this prototype: int ferror(FILE *fp); where fp is a valid file pointer. It returns true

if an error has occurred during the last file operation; otherwise, it returns false. Because each

file operation sets the error condition, ferror() should be called after each file operation;

otherwise, an error may be lost.

Clearer: function resets (sets to zero) the error flag associated with the stream (ferror) pointed

to by stream. The EOF indicator is also reset. The error flags for all streams are initially set to

zero at the successful call to fopen() . Once an error has occurred, the flags are modified until an

explicit call to either clearerr() or rewind() is made. The clearerr() function’s prototype: void

clearerr(FILE *fp);

Where fp is a valid file pointer.

Rewind: function moves the file position indicator to the start of the specified stream. It also

clears the end-of-file and error flags associated with stream. It has no return value. The rewind()

functions prototype is: void rewind(FILE *fp); where fp is a valid file pointer.

Problem Solving with Programming Course Material

Macro
Name

Meaning

SEEK_SET Beginning of file

SEEK_CUR Current position

SEEK_END End of file

Rename: function changes the name of the file specified by oldfname to newfname. The

newfname must not match any existing directory entry. The rename() function returns zero if

successful and nonzero if an error has occurred. The rename() functions prototype is:

int rename(const char *oldfname, const char *newfname);

Remove: function erases the specified file. Its prototype is int remove(const char *filename);

This function returns zero if successful; otherwise, it returns a nonzero value.

If we wish to flush the contents of an output stream, use the fflush() function, whose prototype

is: int fflush(FILE *fp); This function writes the contents of any buffered data to the file

associated with fp. If we call fflush() with fp being null, all files opened for output are flushed.

The fflush() function returns 0 if successful; otherwise, it returns EOF.

Tmpfile: function opens a temporary file for update & returns a pointer to the stream. It

automatically uses a unique filename to avoid conflicts with existing files. tmpfile() functions

prototype is FILE *tmpfile(void); it returns a null pointer on failure; otherwise it returns a

pointer to the stream. The temporary file created by tmpfile() is automatically removed when file

is closed or program terminated.

POSITIONING FUNCTIONS

Fseek: We can perform random-access read and write operations

using fseek() , which sets the file position indicator. Its prototype

is: int fseek(FILE *fp, long numbytes, int origin); Here, fp is a

file pointer returned by a call to fopen() . numbytes is the

number of bytes from origin that will become the new current position, and origin is one of the

macros.

To seek numbytes from the start of the file, origin should be SEEK_SET. To seek from the

current position, use SEEK_CUR; and to seek from the end of the file, use SEEK_END. The

fseek() function returns 0 when successful and a nonzero value if an error occurs. We can use

fseek() to seek in multiples of any type of data by simply multiplying the size of the data by the

number of the item you want to reach. For example: fseek(fp, 9*sizeof(char), SEEK_SET); will

Problem Solving with Programming Course Material

seek to the tenth address in the file that holds the addresses. We can determine the current

location of a file using ftell().

Ftell: We can determine the current location of a file using ftell() . Its prototype: long ftell(FILE

*fp); It returns the location of the current position of the file associated with fp. If a failure

occurs, it returns −1. Random access is mostly implemented on binary files. The reason is text

files may have character translations performed on them, there may not be a direct

correspondence between what is in the file and the byte to which it would appear that we want to

seek. The only time you should use fseek() with a text file is when seeking to a position

previously determined by ftell() , using SEEK_SET.

Sample Projecjts:

1. Write a C program to read name and marks of n number of students from user and

store them in a file.

#include <stdio.h>

int main()

{

 char name[50];

 int marks, i, num;

 printf("Enter number of students: ");

 scanf("%d", &num);

 FILE *fptr;

 fptr = (fopen("C:\\student.txt", "w"));

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 for(i = 0; i < num; ++i)

 {

Problem Solving with Programming Course Material

 printf("For student%d\nEnter name: ", i+1);

 scanf("%s", name);

 printf("Enter marks: ");

 scanf("%d", &marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n", name, marks);

 }

 fclose(fptr);

 return 0;

}

2. Write a C program to read name and marks of n number of students from user and

store them in a file. If the file previously exits, add the information of n students.

#include <stdio.h>

int main()

{

 char name[50];

 int marks, i, num;

 printf("Enter number of students: ");

 scanf("%d", &num);

 FILE *fptr;

 fptr = (fopen("C:\\student.txt", "a"));

 if(fptr == NULL)

 {

 printf("Error!");

 exit(1);

 }

 for(i = 0; i < num; ++i)

Problem Solving with Programming Course Material

 {

 printf("For student%d\nEnter name: ", i+1);

 scanf("%s", name);

 printf("Enter marks: ");

 scanf("%d", &marks);

 fprintf(fptr,"\nName: %s \nMarks=%d \n", name, marks);

 }

 fclose(fptr);

 return 0;

}

3. Write a C program to write all the members of an array of structures to a file using

fwrite(). Read the array from the file and display on the screen.

#include <stdio.h>

struct student

{

 char name[50];

 int height;

};

int main(){

 struct student stud1[5], stud2[5];

 FILE *fptr;

 int i;

 fptr = fopen("file.txt","wb");

 for(i = 0; i < 5; ++i)

 {

 fflush(stdin);

 printf("Enter name: ");

Problem Solving with Programming Course Material

 gets(stud1[i].name);

 printf("Enter height: ");

 scanf("%d", &stud1[i].height);

 }

 fwrite(stud1, sizeof(stud1), 1, fptr);

 fclose(fptr);

 fptr = fopen("file.txt", "rb");

 fread(stud2, sizeof(stud2), 1, fptr);

 for(i = 0; i < 5; ++i)

 {

 printf("Name: %s\nHeight: %d", stud2[i].name, stud2[i].height);

 }

 fclose(fptr);

}

UNIT V : Topics Included

Memory Management

Memory Management: Dynamic memory allocation and deallocation functions:- malloc(),

calloc(), realloc() and free()-examples & discussion for each. Low-level programming, register

variables, bitwise operations, bit fields.

Memory Management

We usually create variables when we write programs and the memory for these variables

will be allocated by compiler at runtime implicitly, if we want to allocate memory explicitly we

can do so using any one of the two ways: Static Memory Allocation and Dynamic Memory

Allocation.

Memory usage:

When we execute a program, compiler requires

some memory to execute the program, where in a

Problem Solving with Programming Course Material

program we write functions, we declare some variables, we sometimes write recursive functions

which intern requires stack memory, and so on. Memory is allocated depending on how the

compiler is written (16 bit compiler, 32 bit compiler…) and on the operating system which is

used. Conceptually memory allocated for executing a program is divided into two types Data

Memory and Program Memory.

 Program Memory is allocated for all the available functions (including main()) in a program.

Main is the first & the last function which is available in memory, and if other functions are

called in the program all such functions must also be available in program memory. If a function

is called more than one time only one copy of function is available.

 Data Memory is allocated for the variables created (global data, local data and dynamic data) in

a program. Local variables are active only when the function block in which they are created is

active. If a function is called more than one time those many copies of local variables are created

in stack memory.

 Heap memory is a predefined area of memory which can be accessed by the program to store

data and variables. The data and variables are allocated on the heap by memory allocation

functions (malloc, calloc, realloc). The system keeps track of where the data is stored. Data and

variables can be deallocated from the heap. The system knows where the free space is and will

use them for additional data storage. We can refer to heap memory only using a pointer.

Dynamic memory allocation and de-allocation functions

Dynamic memory allocation uses predefined functions for allocating and de-allocating

the memory at runtime on Heap memory, which can be accessed only through pointers. There

are many situations when you do not know the exact sizes of arrays used in our programs till

they got executed. You can specify the sizes of arrays in advance, but the arrays can be too small

or too big. If the numbers of data items you want to put into the arrays changes at runtime, we

can do so using dynamic memory allocation functions.

Memory allocation functions:

Problem Solving with Programming Course Material

C provides four dynamic memory allocation functions that we can use to allocate or

reallocate memory spaces while our program is running. We can also release allocated memory

as soon as we don't need it. These four C functions are malloc(), calloc(), realloc(), and free()

which are available in stdlib.h header file which we need to include if we want to use any one of

these functions.

1) malloc: malloc function allocates memory at runtime. It takes the size in bytes and allocates

that much space in the memory. It means that malloc(50) will allocate 50 byte in the memory. It

returns a void pointer and is defined in stdlib.h.

Let's understand it with the help of an example.

 #include <stdio.h>

 #include <stdlib.h>

 #include <string.h>

 int main()

 {

 char name[20];

 char *address;

 strcpy(name, "SREC");

 /* allocating memory dynamically */

 address = (char*)malloc(50 * sizeof(char));

 strcpy(address, "Warangal, Telanagana State");

 printf("Name = %s\n", name);

 printf("Address: %s\n", address);

 return 0;

}

 Output:

Name = SREC

Address: Warangal, Telangana State

In the above example, we assigned and printed the name as we used to do till now. For address,

we estimated that the number of characters should be around 50. So, the size of address will be

50 * sizeof(char).

Problem Solving with Programming Course Material

char *address - Here we declared a pointer to character for address without specifying how

much memory is required.

 address = (char*)malloc(50 * sizeof(char))

By writing this, we assigned a memory of '50 * sizeof(char)' bytes for address. We used (char*)

to typecast the pointer returned by malloc to character.

 strcpy(address, "Warangal, Telangana State")

 By writing this, finally we assigned the address.

 Note: By default, malloc returns a pointer of type void but we can typecast it into a

 pointer of any other form (as we converted it into character type in the above example).

 Note: If the space in memory allocated by malloc is insufficient, then the allocation fails

 and malloc returns NULL pointer

Let's see another example.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int n,i,*p;

 printf("Enter number of elements: ");

 scanf("%d",&n);

 p=(int*)malloc(n * sizeof(int)); //memory allocated using malloc

 if(p == NULL)

 {

 printf("memory cannot be allocated\n");

 }

 else

 {

 printf("Enter elements of array:\n");

 for(i=0;i<n;++i)

 scanf("%d",&*(p+i));

 printf("Elements of array are\n");

 for(i=0;i<n;i++)

Problem Solving with Programming Course Material

 printf("%d\n",*(p+i));

 }

 return 0;

}

 Output:

Enter number of elements:5

Enter elements of array:

1

2

3

4

5

Elements of array are

1

2

3

4

5

 In this example, firstly, we declared a pointer p of type int which contains n elements. Thus,

p is an integer array containing n elements. So, we assigned a memory of size n *

sizeof(int) to the array which the pointer 'p' is pointing to. Thus, we now have a memory space

allocated to the integer array consisting of 'n' elements. Further, we ask the user to input the

values of the elements of the array and display those values.

2) Calloc: Now, suppose you want to put more than one toy in a box and you have only an

approximate idea of the number of toys and the size of each. For that, you need a box the size of

which is equal to the sum of the sizes of all the toys.

 In such cases, we use calloc function. Like malloc, calloc also allocates memory at runtime

and is defined in stdlib.h. It takes the number of elements and the size of each element(in bytes),

initializes each element to zero and then returns a void pointer to the memory. Its syntax is: void

*calloc(n, element-size);

Problem Solving with Programming Course Material

Here, n is the number of elements and element-size is the size of each element. Let's see the last

example of malloc again, but this time with calloc.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int n,i,*p;

 printf("Enter number of elements: ");

 scanf("%d",&n);

 p=(int*)calloc(n, sizeof(int)); //memory allocated using malloc

 if(p == NULL)

 {

 printf("memory cannot be allocated\n");

 }

 else

 {

 printf("Enter elements of array:\n");

 for(i=0;i<n;++i)

 {

 scanf("%d",&*(p+i));

 }

 printf("Elements of array are\n");

 for(i=0;i<n;i++)

 {

 printf("%d\n",*(p+i));

 } }

 return 0;

}

 Output:

Enter number of elements:5

Enter elements of array:

Problem Solving with Programming Course Material

1

2

3

4

5

Elements of array are

1

2

3

4

5

So, this is the same as the example of malloc, with a difference in the syntax of calloc. Here we

wrote (int*)calloc(n, sizeof(int)), where n is the number of elements in the integer array (5 in

this case) and sizeof(int) is the size of each of that element. So the total size of the array is n *

sizeof(int).

Note: calloc initializes the allocated memory to zero value whereas malloc doesn't.

 calloc is used to allocate memory to mostly arrays and structures.

3) Realloc: If suppose we allocated more or less memory than required, then we can change the

size of the previously allocated memory space using realloc. Its syntax is as follows.

void *realloc(pointer, new-size);

Let's see an example on realloc.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 char *p1;

 int m1=10, m2=20;

 p1 = (char*)malloc(m1);

 strcpy(p1, "Old String");

Problem Solving with Programming Course Material

 p1 = (char*)realloc(p1, m2);

 strcat(p1, "New String");

 printf("%s\n", p1);

 return 0;

}

Output: Old StringNew String

In the above example, we declared a pointer p1 which will be used to dynamically allocate a

memory space: p1 = (char*)malloc(m1) - By writing this, we assigned a memory space of 10

bytes which the pointer p1 is pointing to. We used (char*) to typecast the pointer returned by

malloc to character.

strcpy(p1, "Old String") - This assigns a string value "Old String" to the memory which the

pointer p1 is pointing to. Currently, the memory space is 10 bytes which can easily store the

string "Old String", but what if now we want that memory space to store the string "Old

StringNew String"? For this, we need to expand the size of our memory space which we can

easily do with realloc.

p1 = (char*)realloc(p1, m2) - This increases the size of the memory space (whose address is

stored in p1) to 20 bytes(since the value of m2 is 20) which can easily store the string "Old

StringNew String".

strcat(p1, "New String") - This adds the string "New String" at the end of the string stored in

the memory pointed by p1 i.e. "Old String". So now, the memory pointed by p1, now stores the

string value "Old StringNew String".

4) free: function is used to deallocate or free the memory after the program finishes which was

dynamically allocated in the program. It is adviced to free the dynamically allocated memory

after the program finishes so that it becomes available for future use.

 void free(pointer);

This was the syntax of free function whose return type is void. Now, let's see an example where

we released the dynamically allocated memory at the end of the program using free.

#include <stdio.h>

#include <stdlib.h>

Problem Solving with Programming Course Material

int main()

{

 int n,i,*p;

 printf("Enter number of elements:\n");

 scanf("%d",&n);

 p=(int*)malloc(n * sizeof(int));

 if(p == NULL)

 {

 printf("memory cannot be allocated\n");

 }

 else

 {

 printf("Enter elements of array:\n");

 for(i=0;i<n;++i)

 {

 scanf("%d",&*(p+i));

 }

 printf("Elements of array are\n");

 for(i=0;i<n;i++)

 {

 printf("%d\n",*(p+i));

 } }

 free(p);

 return 0;

}

 Output:

Enter number of elements:5

Enter elements of array:

1

2

3

4

Problem Solving with Programming Course Material

5

Elements of array are

1

2

3

4

5

So here by writing free(p), we released the memory which was dynamically allocated using

malloc.

Low-level programming

In addition to the high level language constructs, (data type and operators), C also supports low

level programming features which enable the programmer to carry out bit-wise operations. These

features are normally provided in assembly language or machine language.

A low-level programming language is a programming language that provides little or no

abstraction from a computer's instruction set architecture—commands or functions in the

language map closely to processor instructions. Generally this refers to either machine code or

assembly language. The word "low" refers to the small or nonexistent amount of abstraction

between the language and machine language; because of this, low-level languages are sometimes

described as being "close to the hardware". Programs written in low-level languages tend to be

relatively non-portable, mainly because of the close relationship between the language and the

hardware architecture.

Low-level languages can convert to machine code without a compiler or interpreter— second-

generation programming languages use a simpler processor called an assembler— and the

resulting code runs directly on the processor. A program written in a low-level language can be

made to run very quickly, with a small memory footprint. An equivalent program in a high-level

language can be less efficient and use more memory. Low-level languages are simple, but

considered difficult to use, due to numerous technical details that the programmer must

remember. By comparison, a high-level programming language isolates execution semantics of a

Problem Solving with Programming Course Material

computer architecture from the specification of the program, which simplifies development.

Low-level programming languages are sometimes divided into two categories: first generation,

and second generation.

Register Variables

C supports four different storage classes, viz. static, auto, extern and register. As such, general

purpose registers are special storage areas within the Central Processing Unit (CPU). The CPU

registers are used for temporarily holding intermediate results generated by the Arithmetic Logic

Unit (ALU). It also stores information that are transferred from the main memory of the

computer for further processing, this reduces the traffic between CPU and RAM which

inevitably leads to higher degree of efficiency.

In C, the content of register variables reside inside registers. A program that uses register

variables execute faster since their values are stored inside the registers within the CPU rather

than in the RAM. A variable can be declared of storage class type register by prefixing the

variable declaration by the keyword register. For example,

 register int cnt = 0;

However, only a few register variables can effectively be used in a C function. The exact number

of register variable declarations possible in a function is Machine dependent. The scope of a

register variable is identical to that of auto type variables.

It is not always the case that a variable defined to be of storage class register has to be a register

variable only. The declaration is valid only when the requested register space is available,

otherwise the variable declared to have storage class register, will be treated as automatic

variable only. The important distinction between an automatic and register variable is that a

register variable can never be preceded by the unary operator because a register variable does not

have a l-value.

Bitwise Operations

Problem Solving with Programming Course Material

A bitwise operation operates on one or two bit patterns or binary numerals at the level of

their individual bits. Bitwise operations are slightly faster than addition and subtraction

operations and usually significantly faster than multiplication and division operations.

Bitwise operations are necessary for much low-level programming, such as writing

device drivers, low-level graphics, communications protocol packet assembly and decoding.

Although machines often have efficient built-in instructions for performing arithmetic

and logical operations, in fact all these operations can be performed just by combining the

bitwise operators and zero-testing in various ways.

The available bitwise operators are:

1. NOT: - The bitwise NOT, or complement, is a unary operation that performs logical negation

on each bit, forming the ones' complement of the given binary

value. Digits which were 0 become 1, and vice versa. In many

programming languages the bitwise NOT operator is "~" (tilde). This operator must not be

confused with the "logical not" operator, "!" (exclamation point).

2. OR: - A bitwise OR takes two bit patterns of equal length, and produces another one of the

same length by matching up corresponding bits (the first of each; the second of each; and so on)

and performing the logical inclusive OR operation on each

pair of corresponding bits. In each pair, the result is 1 if the

first bit is 1 OR the second bit is 1 OR both bits are 1, and otherwise the result is 0. The bitwise

OR operator is "|" (pipe). Again, this operator must not be confused with its Boolean "logical

or" counterpart, which treats its operands as Boolean values, and is written "||" (two pipes).

3. XOR: - A bitwise exclusive or takes two bit patterns of equal length and

performs the logical XOR operation on each pair of corresponding bits.

The result in each position is 1 if the two bits are different, and 0 if they

are the same. The bitwise XOR operator is "^" (caret).

4. AND: - A bitwise AND takes two binary representations of equal length and performs the

logical AND operation on each pair of corresponding bits. In each pair, the

result is 1 if the first bit is 1 AND the second bit is 1. Otherwise, the result

is 0. The bitwise AND operator is "&" (ampersand). Again, this operator

Problem Solving with Programming Course Material

must not be confused with its Boolean "logical and" counterpart, which treats its operands as

Boolean values, and is written "&&" (two ampersands).

5. Bit shifts: - The bit shifts are sometimes considered bitwise operations, since they operate on

the binary representation of an integer instead of its numerical value; however, the bit shifts do

not operate on pairs of corresponding bits, and therefore cannot properly be called bit-wise

operations. In this operation, the digits are moved, or shifted, to the left or right.

In an arithmetic shift, the bits

that are shifted out of either end

are discarded. In a left arithmetic

shift, zeros are shifted in on the

right; in a right arithmetic shift.

This example uses an 8-bit

register.

In the first case, the leftmost digit was shifted past the end of the register, and a new 0 was

shifted into the rightmost position. In the second case, the rightmost 1 was shifted out, and a new

0 was copied into the leftmost position. Multiple shifts are sometimes shortened to a single shift

by some number of digits. For example:

The left and right shift operators are "<<" and ">>", respectively. The number of places to shift

is given as the second argument to the shift operators. For example: x = y << 2;

assigns x the result of shifting y to the left by two bits.

For example showing how to multiply two integers a and b (a less than b) uses bitshifts and

addition:

void main()

 { int a=5,b=6;

 int c=0;

 while(b!=0)

 {

 if((b&1)!=0)

Problem Solving with Programming Course Material

 { c=c+a; }

 a=a<<1;

 b=b>>1;

 }

 printf("%d", c);

 }

Bit Fields

Bitfields can only be declared inside a structure or a union, and allow you to specify

some very small objects of a given number of bits in length. Their usefulness is limited and they

aren't seen in many programs. Bit fields do not have addresses so we can't have pointers to them

or arrays of them.

A bit field is different from a bit array which is used to store a large set of bits indexed

by integers and is often wider than any integral type. Bit fields typically fit within a machine

word, and the denotation of bits is independent of their numerical index.

However, bit members in structs have practical drawbacks. First, the ordering of bits in

memory is architecture dependent and memory padding rules vary from compiler to compiler.

In addition, many popular compilers generate inefficient code for reading and writing bit

members, and there are potentially thread safety issues relating to bit fields due to the fact that

most machines cannot manipulate arbitrary sets of bits in memory, but must instead load and

store whole words.

Use of Bitfields:

The main use of bitfields is either to allow tight packing of data or to be able to specify

the fields within some externally produced data files. C gives no guarantee of the ordering of

fields within machine words, so if we use them our program wil be non-portable and will be

compiler-dependent too.

The Standard says that fields are packed into storage units, which are typically machine

words. The packing order, and whether or not a bitfield may cross a storage unit boundary, are

http://en.wikipedia.org/wiki/Bit_array
http://en.wikipedia.org/wiki/Word_(computer_science)
http://en.wikipedia.org/wiki/Endianness
http://en.wikipedia.org/wiki/Byte_padding
http://en.wikipedia.org/wiki/Compiler
http://training.gbdirect.co.uk/courses/c/

Problem Solving with Programming Course Material

implementation defined. To force alignment to a storage unit boundary, a zero width field is used

before the one that you want to have aligned.

struct foo

{ int flag : 1;

 int counter : 15;

};

void main()

{ struct foo my_foo;

 my_foo.flag = !my_foo.flag;

 printf("\n\tflag = %d",my_foo.flag);

 printf("\n\t Counter = %d",my_foo.counter);

 ++my_foo.counter;

 printf("\n\t Counter = %d",my_foo.counter);

}

UNIT VI : Topics Included

Developing Large Programs

Some Additional features of C, enumerations, command line parameters, more about library

functions, macros, C preprocessor. Pre-processor directives: #define, #undef, #if, #endif, #elif,

#ifdef, #ifndef, #error.

Enumerated Type Declaration

When you create an enumerated type, only blueprint for the variable is created. Here's how you

can

create variables of enum type.

enum boolean { false, true };

enum boolean check;

// Changing default values of enum

enum suit

{

 club = 0,

 diamonds = 10,

Problem Solving with Programming Course Material

 hearts = 20,

 spades = 3,

};

• An enumeration is a user-defined data type that consists of integral constants. To define

an enumeration, keyword enum is used.

• enum flag { const1, const2, ..., constN }; Here, name of the enumeration is flag.

• And, const1, const2,...., constN are values of type flag.

• By default, const1 is 0, const2 is 1 and so on. You can change default values of enum

elements during declaration (if necessary).

Here, a variable check of type enum boolean is created.

Here is another way to declare same check variable using different syntax.

enum boolean { false, true } check;

#include <stdio.h>

enum week { sunday, monday, tuesday, wednesday, thursday, friday, saturday };

int main()

{

 enum week today;

 today = wednesday;

 printf("Day %d",today+1);

 return 0;

}

Why enums are used in C programming?

 Enum variable takes only one value out of many possible values. Example to demonstrate

it,

#include <stdio.h>

enum suit

{

 club = 0, diamonds = 10,

 hearts = 20,

 spades = 3

} card;

Problem Solving with Programming Course Material

int main()

{

card = club;

printf("Size of enum variable = %d bytes", sizeof(card));

return 0;

}

1. It's because the size of an integer is 4 bytes.

2. This makes enum a good choice to work with flags.

3. You can accomplish the same task using structures. However, working with enums gives

you efficiency along with flexibility.

Command line arguments

• It is possible to pass some values from the command line to your C programs when they

are executed. These values are called command line arguments and many times they are

important for your program especially when you want to control your program from outside

instead of hard coding those values inside the code.

• The command line arguments are handled using main() function arguments where argc

refers to the number of arguments passed, and argv[] is a pointer array which points to each

argument passed to the program. Following is a simple example which checks if there is any

argument supplied from the command line and take action accordingly

A sample Program

#include <stdio.h>

int main(int argc, char *argv[])

{

 if(argc == 2)

 {

 printf("The argument supplied is %s\n", argv[1]);

 }

 else if(argc > 2)

 {

 printf("Too many arguments supplied.\n");

 }

Problem Solving with Programming Course Material

 else

 {

 printf("One argument expected.\n");

}

}

• When the above code is compiled and executed with single argument, it produces the

following result.

• $./a.out testing The argument supplied is testing When the above code is compiled and

executed with a two arguments, it produces the following result.

• $./a.out testing1 testing2 Too many arguments supplied. When the above code is

compiled and executed without passing any argument, it produces the following result.

• $./a.out One argument expected It should be noted that argv[0] holds the name of the

program itself and argv[1] is a pointer to the first command line argument supplied, and *argv[n]

is the last argument. If no arguments are supplied, argc will be one, and if you pass one argument

then argc is set at 2.

You pass all the command line arguments separated by a space, but if argument itself has a space

then you can pass such arguments by putting them inside double quotes "" or single quotes ''. Let

us re-write above example once again where we will print program name and we also pass a

command line argument by putting inside double quotes –

#include <stdio.h>

int main(int argc, char *argv[])

{

 printf("Program name %s\n", argv[0]);

 if(argc == 2)

 {

 printf("The argument supplied is %s\n", argv[1]);

 }

 else if(argc > 2)

 {

 printf("Too many arguments supplied.\n");

 }

Problem Solving with Programming Course Material

else

 {

 printf("One argument expected.\n");

 }

}

• When the above code is compiled and executed with a single argument separated by

space but inside double quotes, it produces the following result.

• $./a.out "testing1 testing2" Program name ./a.out The argument supplied is testing1

testing2

C Standard library functions

• C Standard library functions or simply C Library functions are inbuilt functions in C

programming.

• The prototype and data definitions of the functions are present in their respective header

files, and must be included in your program to access them.

• For example: If you want to use printf() function, the header file <stdio.h> should be

included.

#include <stdio.h>

int main()

{

 // If you use printf() function without including the <stdio.h> // header file, this program will

show an error.

printf("Catch me if you can.");

}

Advantages of using C library functions

There are many library functions available in C programming to help you write a good and

efficient program. But, why should you use it?

Problem Solving with Programming Course Material

Below are the 4 most important advantages of using standary library functions.

1. They work

One of the most important reasons you should use library functions is simply because they work.

These functions have gone through multiple rigorous testing and are easy to use.

2. The functions are optimized for performance

Since, the functions are "standard library" functions, a dedicated group of developers constantly

make them better.

In the process, they are able to create the most efficient code optimized for maximum

performance.

3. It saves considerable development time

Since the general functions like printing to a screen, calculating the square root, and many more

are already written. You shouldn't worry about creating them once again.

It saves valuable time and your code may not always be the most efficient.

3. The functions are portable

With ever changing real world needs, your application is expected to work every time,

everywhere.

And, these library functions help you in that they do the same thing on every computer.

This saves time, effort and makes your program portable.

Use Of Library Function To Find Square root

• Suppose, you want to find the square root of a number.

• You can always write your own piece of code to find square root but, this process is time

consuming and it might not be the most efficient process to find square root.

• However, in C programming you can find the square root by just using sqrt() function

which is defined under header file "math.h"

#include <stdio.h>

#include <math.h>

int main()

{

 float num, root;

 printf("Enter a number: ");

 scanf("%f", &num);

Problem Solving with Programming Course Material

 // Computes the square root of num and stores in

 root. root = sqrt(num);

 printf("Square root of %.2f = %.2f", num, root); return 0;

 }

C Library Functions Under Different Header File

C preprocessor - Pre-processor directives

C Header Files

<assert.h> Program assertion functions

<ctype.h> Character type functions

<locale.h> Localization functions

<math.h> Mathematics functions

<setjmp.h> Jump functions

<signal.h> Signal handling functions

<stdarg.h> Variable arguments handling functions

<stdio.h> Standard Input/Output functions

<stdlib.h> Standard Utility functions

<string.h> String handling functions

<time.h> Date time functions

https://www.programiz.com/c-programming/library-function/ctype.h
https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/math.h
https://www.programiz.com/c-programming/library-function/string.h

Problem Solving with Programming Course Material

• #define preprocessor directive is the most useful preprocessor directive in C language.

We use it to define a name for particular value/constant/expression.

• C preprocessor processes the defined name and replace each occurrence of a particular

string/defined name (macro name) with a given value (micro body).

Syntax to define a MACRO using #define

 #define MACRO_NAME macro_body

• Here, MACRO_NAME is a C identifier and macro_body is string/value/expression.

#include <stdio.h> // Macro definition

#define COUNTRY "INDIA" // String constant

#define TRUE 1 // Integer constant

#define FALSE 0 // Integer constant

#define SUM (10 + 20) // Macro definition

int main()

{

 printf("COUNTRY: %s\n", COUNTRY);

 printf("TRUE: %d\n", TRUE);

 printf("FALSE: %d\n", FALSE);

 printf("SUM(10 + 20): %d\n", SUM);

 return 0;

}

• Here, COUNTRY, TRUE and FALSE are compile time constants and SUM is a macro.

The C pre-processor replaces all occurrences of COUNTRY with "India" and all other constants

with their respective value before compilation.

#undef preprocessor directive

• We use #undef directive to remove a defined macro. We generally un-define a macro,

when we do not require or want to redefine it. To redefine a macro, we need to undefined the

macro and redefine it.

Syntax:

#undef MACRO_NAME

Where MACRO_NAME is the macro to remove

#include <stdio.h> // Macro definition

#define TRUE 1

Problem Solving with Programming Course Material

#define FALSE 0

int main()

{

 printf("TRUE: %d\n", TRUE);

 printf("FALSE: %d\n", FALSE); // Undefine a previously defined macro

 #undef TRUE

 #undef FALSE // Re-define macro values

 #define TRUE 0

 #define FALSE 1

printf("\nMacro values are redefinition\n");

printf("TRUE: %d\n", TRUE);

printf("FALSE: %d\n", FALSE);

return 0;

}

Parameterized Macros (Function like Macros)

• We use Function like macros to rewrite small functions using macros to save the

execution time.

• If we use functions, then at every function call programs execution will move between

function definition and calling, which consumes time.

• To save this time, we can use parameterized macros. The macro definition will be

expanded to the function call during pre-processing.

• Syntax:

#define MACRO_NAME(parameters) macro_body

#include <stdio.h> // Function to fund sum of two numbers

int sum (int a, int b)

{

 return (a + b);

} // Function like Macro for above function #define #define SUM(a, b) (a + b)

int main()

{

printf("SUM using function: %d\n", sum(100, 200)); printf("SUM using macro: %d\n",

SUM(100, 200));

https://codeforwin.org/2017/09/functions-c-programming.html

Problem Solving with Programming Course Material

return 0;

}

#ifdef, #ifndef and #endif conditional preprocessor directive

• We use conditional directives to check if a macro is defined or not. Both #ifdef and

#ifndef are complements of each other.

• #ifdef will compile all code if a given macro is defined.

• Syntax:

#ifdef MACRO_NAME

Where MACRO_NAME is our macro to test if defined.

#ifndef conditional directive

• #ifndef is similar to #ifdef just works as a complement. It process block of code if a

given macro is not defined.

• Syntax:

#ifndef MACRO_NAME

Where MACRO_NAME is our macro to test if not defined.

#include <stdio.h> // MACRO definition

#define COUNTRY "INDIA"

int main()

{ // If COUNTRY is defined, print a message

 #ifdef COUNTRY

 printf("Country is defined\n");

 #endif // If STATE is not defined, define it

 #ifndef STATE

 printf("State is not defined. Defining state. \n");

 #define STATE "PATNA"

 #endif

 printf("State is: %s\n", STATE);

return 0;

}

• NOTE: Conditional directive #ifdef or #ifndef must end with #endif. #endif defines

scope of the conditional directive.

• We use conditional directives to restrict file loading multiple times.

Problem Solving with Programming Course Material

#if, #elif, #else and #endif preprocessor directives

• C supports conditional compilation pre-processors directives, similar to if...else

statements in C. We use them for conditional compilations. C conditional preprocessor directives

compiles multiple conditional code blocks.

Syntax:

#if expression

// If condition is true

#elif expression

// If else if condition is true

#else

// If no condition is true

#endif

A Sample Program

#include <stdio.h>

#define IND 1

#define USA 2

#define UK 3

#define COUNTRY IND

int main()

{

 #if COUNTRY == IND

 printf("Selected country code is: %d\n", COUNTRY);

 // Do some task if country is India

 #elif COUNTRY == USA printf("Selected country code is: %d\n", COUNTRY);

 // Do some task if country is USA

 #else printf("Selected country code is: %d\n", COUNTRY);

 // Do some task if country is UK

#endif

return 0;

}

https://codeforwin.org/2017/08/if-else-statement-c.html
https://codeforwin.org/2017/08/if-else-statement-c.html

